以生物油为原料, 3Ni/SAPO-11为催化剂,在固定床反应器中进行加氢催化制备生物航空煤油,探究不同反应温度、压强、空速对液相产物中C9~C16选择性、C9~C16收率以及异正比的影响,得到最佳反应条件。研究发现,在最佳条件下,即温度400 ℃、压强1.5 MPa、空速1.9 h-1时,C9~C16选择性为52.79%,收率为51.48%,异正比为9.11。以3Ni/SAPO-11分子筛为载体,制备并表征了3种金属(Cu、Fe、Co)负载的3Ni/SAPO-11双功能催化剂,在最佳反应条件下,通过固定床实验考察不同金属助剂的加入对反应产物的影响。
Abstract
The article uses biological oil as raw material and 3Ni/SAPO-11 as catalyst to prepare biological aviation kerosene by catalytic hydrogenation in a fixed bed reactor, explore the effects of different reaction temperature, pressure and space velocity on the selectivity of C9-C16, the yield of C9-C16 and the iso-to-normal ratio in liquid phase products, the optimal reaction conditions were obtained. It is found that under the best conditions, temperature 400 ℃, pressure 1.5 MPa, space velocity 1.9 h-1, the selectivity of C9-C16 is 52.79%, the yield of C9-C16 is 51.48%, and the iso-to-normal ratio is 9.11. A 3Ni/SAPO-11 molecular sieve was used as the carrier, 3Ni/SAPO-11 bifunctional catalyst with three metals (Cu, Fe, Co) were prepared and characterized. Under the optimized reaction conditions, the effects of the addition of different metal promoters on the reaction products were investigated by fixed bed experiments.
关键词
生物航空煤油 /
催化剂 /
催化热解 /
生物油
Key words
biological aviation kerosene /
catalyst /
catalytic pyrolysis /
biological oil
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 沈鹏欣. 负载型金属催化剂的制备及其油脂加氢脱氧性能研究[D]. 南京: 东南大学, 2018.
SHEN P X.Preparation of supported metal catalyst and its hydrodeoxygenation performance[D]. Nanjing: Southeast University, 2018.
[2] NYGREN E, ALEKLETT K, HÖÖK M. Aviation fuel and future oil production scenarios[J]. Energy policy, 2009, 37(10): 4003-4010.
[3] 姚远, 李锋民, 李媛媛, 等. 水生植物热解生物油对中肋骨条藻抗氧化酶活性的影响[J]. 环境科学, 2013, 34(2): 589-595.
YAO Y, LI F M, LI Y Y, et al.Effects of macrophytes pyrolysis bio-oil on Skeletonema costatum antioxidant enzyme activities[J]. Environmental science, 2013, 34(2): 589-595.
[4] 李锋民, 单时, 胡忻雨, 等. 水生植物热解生物油对中肋骨条藻的抑制作用[J]. 环境科学学报, 2011, 31(9): 1942-1948.
LI F M, SHAN S, HU X Y, et al.Inhibitory effects of macrophyte bio-oils on Skeletonema costatum[J]. Acta scientiae circumstantiae, 2011, 31(9): 1942-1948.
[5] 樊永胜, 蔡忆昔, 李小华, 等. 油菜秸秆真空热解蒸气在线催化提质研究[J]. 农业机械学报, 2014, 45(12): 234-240.
FAN Y S, CAI Y X, LI X H, et al.Catalytic upgrading of pyrolytic vapors from rape straw vacuum pyrolysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 234-240.
[6] 董平, 佟华芳, 李建忠, 等. 加氢法制备生物航煤的现状及发展建议[J]. 石化技术与应用, 2013, 31(6): 461-466.
DONG P, TONG H F, LI J Z, et al.Status and development proposals of bio-jet fuel prepared by hydroprocessing[J]. Petrochemical technology & application, 2013, 31(6): 461-466.
[7] 陈凯, 钱璟, 杨智渊, 等. 航空生物燃料生产工艺研究进展[J]. 石油化工, 2012, 41(8): 974-978.
CHEN K, QIAN J, YANG Z Y, et al.Advances in aviation biofuel production technology[J]. Petrochemical technology, 2012, 41(8): 974-978.
[8] CHEN R X, WANG W C.The production of renewable aviation fuel from waste cooking oil. Part I: bio-alkane conversion through hydro-processing of oil[J]. Renewable energy, 2019, 135: 819-835.
[9] 王庆申. 生物航煤发展现状分析[J]. 石油石化节能与减排, 2015(3): 1-6.
WANG Q S.Development status analysis of bio-jet fuel industry[J]. Energy conservation and emission reduction in petroleum and petrochemical industry, 2015(3): 1-6.
[10] LYU Y C, ZHAN W L, WANG X X, et al.Regulation of synergy between metal and acid sites over the Ni-SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel, 2020, 274: 117855.
[11] 杨玲梅, 罗文, 付俊鹰, 等. 废油脂固体催化加氢制备生物航油的研究进展[J]. 太阳能学报, 2022, 43(12): 423-431.
YANG L M, LUO W, FU J Y, et al.Review of solid catalysis hydrogenation waste oil to produce bio-jet fuel[J]. Acta energiae solaris sinica, 2022, 43(12): 423-431.
[12] 崔楼伟, 何观伟, 顾建峰, 等. 小晶粒SAPO-11分子筛合成及其正己烷异构化催化性能[J]. 工业催化, 2018, 26(9): 35-40.
CUI L W, HE G W, GU J F, et al.Synthesis of small crystal SAPO-11 molecular sieve and its catalytic activity for n-hexane hydroisomerization[J]. Industrial catalysis, 2018, 26(9): 35-40.
[13] TAYLOR R J, PETTY R H.Selective hydroisomerization of long chain normal paraffins[J]. Applied catalysis A: general, 1994, 119(1): 121-138.
[14] VERMA D, KUMAR R, RANA B S, et al.Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites[J]. Energy & environmental science, 2011, 4(5): 1667-1671.
[15] 龚绍峰, 龚建议, 雷稳强, 等. 动植物油脂加氢脱氧贵金属系催化剂的研究进展[J]. 中国油脂, 2022, 47(8): 82-89.
GONG S F, GONG J Y, LEI W Q, et al.Review of noble metal catalyst for the hydrodeoxygenation of animal fats and vegetable oils[J]. China oils and fats, 2022, 47(8): 82-89.
[16] ZHANG Z X, BI P Y, JIANG P W, et al.Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process[J]. Energy, 2015, 90: 1922-1930.
[17] 朱小明, 闫常峰, 郭常青, 等. 催化剂Ni-Cu/SrCeO3在乙醇水蒸气重整制氢的催化研究[J]. 太阳能学报, 2012, 33(5): 878-881.
ZHU X M, YAN C F, GUO C Q, et al.Hydrogen production reserach by steam reforming of ethanol over Ni-Cu/SrCeO3 catalyst[J]. Acta energiae solaris sinica, 2012, 33(5): 878-881.
[18] 刘维桥, 尚通明, 周全法, 等. 金属助剂对Pt/SAPO-11催化剂物化及异构性能的影响[J]. 燃料化学学报, 2010, 38(2): 212-217.
LIU W Q, SHANG T M, ZHOU Q F, et al.Study on the physicochemical and isomerization property of Pt/SAPO-11 catalysts promoted by metallic additive[J]. Journal of fuel chemistry and technology, 2010, 38(2): 212-217.
[19] 李影. Cu-ZSM-35的合成及其催化植物油一步法制生物航空煤油[D]. 大连: 大连理工大学, 2022.
LI Y.Synthesis of Cu-ZSM-35 and its catalytic activity for one-step preparation of bioaviation kerosene from vegetable oil[D]. Dalian: Dalian University of Technology, 2022.
[20] HU M Q, YUAN H, LIU W.Decarboxylation of oleic acid over ordered mesoporous Pt/SAPO-11[J]. Energy & fuels, 2019, 33(10): 9956-9964.
[21] 李延吉, 赵明, 李明泽, 等. 改性HZSM-5催化玉米秸秆与HDPE共热解制轻质芳烃[J]. 太阳能学报, 2023, 44(4): 238-246.
LI Y J, ZHAO M, LI M Z, et al.Modified HZSM-5 catalyzed co-pyrolysis of corn stover and hdpe to btexn[J]. Acta energiae solaris sinica, 2023, 44(4): 238-246.