融合改进Informer与迁移学习的风电功率预测

郭利进, 孙淼, 衡安阳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 371-377.

PDF(1932 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1932 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 371-377. DOI: 10.19912/j.0254-0096.tynxb.2024-0425
第二十七届中国科协年会学术论文

融合改进Informer与迁移学习的风电功率预测

  • 郭利进1,2, 孙淼1,2, 衡安阳1,2
作者信息 +

WIND POWER PREDICTION BASED ON IMPROVED INFORMER AND TRANSFER LEARNING

  • Guo Lijin1,2, Sun Miao1,2, Heng Anyang1,2
Author information +
文章历史 +

摘要

为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型中,提出循环微调迁移学习,将模型从源监测站迁移到目标站,实现在有限历史数据情况下预测性能的提升。最后,通过与传统Informer模型及其他基线预测方法比较,FIITL模型展现了在有限数据情况下的性能优势。

Abstract

To overcome the instability of wind power sequences resulting in low prediction accuracy and the limited historical data of some wind farms, we propose a wind power prediction model called feature interaction in Informer with transfer learning (FIITL). Firstly, we introduce a feature interaction (FI) amechanism with dual-channel input to further extract information. Secondly, transfer learning (TL) is incorporated into the prediction model, resulting in a cyclic fine-tuning transfer learning method. This method transfers the model from a source monitoring station to a target station, thereby improving predictive performance under limited historical data. Finally, the FIITL model is compared with traditional Informer models and other baseline prediction methods. The results demonstrate that the FIITL model outperforms these models in situations with limited data.

关键词

迁移学习 / 风电功率 / 预测 / Informer / 特征交互

Key words

transfer learning / wind power / forecasting / Informer / feature interaction

引用本文

导出引用
郭利进, 孙淼, 衡安阳. 融合改进Informer与迁移学习的风电功率预测[J]. 太阳能学报. 2025, 46(7): 371-377 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0425
Guo Lijin, Sun Miao, Heng Anyang. WIND POWER PREDICTION BASED ON IMPROVED INFORMER AND TRANSFER LEARNING[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 371-377 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0425
中图分类号: TM614   

参考文献

[1] LIU H, MI X W, LI Y F.Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network[J]. Energy conversion and management, 2018, 166: 120-131.
[2] SHOKRI GAZAFROUDI A.Assessing the impact of load and renewable energies’ uncertainty on a hybrid system[J]. International journal of energy and power engineering, 2016, 5(2): 1-8.
[3] 张晓艳, 向勉, 朱黎, 等. 基于MLP-BiLSTM-TCN组合的超短期风电功率预测[J]. 湖北民族大学学报(自然科学版), 2023, 41(4): 513-519, 529.
ZHANG X Y, XIANG M, ZHU L, et al.Ultra short term wind power prediction based on MLP-BiLSTM-TCN combination[J]. Journal of Hubei Minzu University (natural science edition), 2023, 41(4): 513-519, 529.
[4] 刘凡, 李捍东, 覃涛. 基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测[J]. 太阳能学报, 2024, 45(1): 151-158.
LIU F, LI H D, QIN T.Short-term wind power prediction based on CEEMDAN-AsyHyperBand-MultiTCN[J]. Acta energiae solaris sinica, 2024, 45(1): 151-158.
[5] 师洪涛, 李艺萱, 丁茂生, 等. 基于多重联合概率与改进加权HMM的风电功率预测方法[J]. 太阳能学报, 2023, 44(11): 247-254.
SHI H T, LI Y X, DING M S, et al.Wind power prediction method based on multiple joint probability and improved weighted HMM[J]. Acta energiae solaris sinica, 2023, 44(11): 247-254.
[6] 张惠娟, 刘琪, 岑泽尧, 等. 基于GWO-MLP的光伏系统输出功率短期预测模型[J]. 电测与仪表, 2022, 59(7): 72-77, 113.
ZHANG H J, LIU Q, CEN Z Y, et al.Short-term prediction model of output power of photovoltaic system based on GWO-MLP[J]. Electrical measurement & instrumentation, 2022, 59(7): 72-77, 113.
[7] LIU E J, WANG Y X, HUANG Y Z.Short-term forecast of multi-load of electrical heating and cooling in regional integrated energy system based on deep LSTM RNN[C]//2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). Wuhan, China, 2020: 2994-2998.
[8] HONG Y Y, SATRIANI T R A. Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network[J]. Energy, 2020, 209: 118441.
[9] 王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44(3): 204-211.
WANG W G, WEI Y B, TENG X D.Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta energiae solaris sinica, 2023, 44(3): 204-211.
[10] ZHOU H Y, ZHANG S H, PENG J Q, et al.Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(12): 11106-11115.
[11] ZHANG Y H, YAN J C.Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting[C] //International Conference on Learning Representations. Kigali, Rwanda ,2024
[12] WU H X, XU J H, WANG J M, et al.Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[J]. Advances in neural information processing systems, 2021, 34: 22419-22430.
[13] ZHOU T, MA Z Q, WEN Q S, et al.FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//International Conference on Machine Learning. Honolulu, Hawaii, USA, 2022: 27268-27286.
[14] MINAMI S, LIU S, WU S, et al.A general class of transfer learning regression without implementation cost[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(10): 8992-8999.
[15] YE R, DAI Q.A relationship-aligned transfer learning algorithm for time series forecasting[J]. Information sciences, 2022, 593: 17-34.
[16] LYU M Q, LI Y F, CHEN L, et al.Air quality estimation by exploiting terrain features and multi-view transfer semi-supervised regression[J]. Information sciences, 2019, 483: 82-95.
[17] MA J, LI Z, CHENG J C P, et al. Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network[J]. Science of the total environment, 2020, 705: 135771.
[18] WOO G, LIU C H, SAHOO D, et al. ETSformer: exponential smoothing transformers for time-series forecasting[EB/OL]. (2022-06-20): 2202.01381. https://arxiv.org/abs/2202.01381v2.
[19] 周军, 王渴心, 王岩. 融合迁移学习与CGAN的风电集群功率超短期预测[J]. 电力系统及其自动化学报, 2024, 36(5): 9-18.
ZHOU J, WANG K X, WANG Y.Fusion of transfer learning and CGAN for ultra short-term power prediction of wind power clusters[J]. Proceedings of the CSU-EPSA, 2024, 36(5): 9-18.
[20] 周姿含, 王叙萌, 陈为. 基于迁移学习的交互时序数据可视化生成方法[J]. 浙江大学学报(工学版), 2024, 58(2): 239-246.
ZHOU Z H, WANG X M, CHEN W.Interactive visualization generation method for time series data based on transfer learning[J]. Journal of Zhejiang University (engineering science), 2024, 58(2): 239-246.

基金

国家自然科学基金(52077155)

PDF(1932 KB)

Accesses

Citation

Detail

段落导航
相关文章

/