鉴于传统的太阳电池等效电路参数辨识方法存在结构复杂、辨识精度不高、鲁棒性不强等问题,提出一种基于改进树种算法(ITSA)的太阳电池等效电路参数辨识方法。引入随迭代次数自适应变化的搜索趋势,提升算法的局部最优收敛能力和全局搜索能力;用自适应步长因子替代算法随机步长因子,加快算法后期寻优迭代速度,缩短寻优时间。将改进的树种算法用于双二极管太阳电池等效电路模型参数辨识,与其他算法对比,该方法所得电流均方根误差最小,预测数据与测量数据拟合程度高,表明改进的树种算法能有效地对太阳电池等效电路参数进行辨识,具有较高的辨识精度和收敛性,便于工程应用。
Abstract
In response to the problems of the traditional parameter identification approaches of solar cell model, such as complex structure, low identification accuracy, weak robustness and so on, a parameter identification method for the equivalent model of solar cell based on improved tree seed algorithm (ITSA) is proposed. A variable adapting gradually with the number of iterations is introduced, which significantly enhances the capability of local optimal convergence and global searching. An adaptive step factor is introduced to replace the random step factor for improving the optimum speed and reducing the optimization time in later stages of the algorithm. Applied to the parameter identification of the double-diode model,the root mean square error of ITSA is smaller than that of other algorithms and the fitting accuracy of identification results is high with the measured data, which shows that ITSA can effectively identify the parameters of solar cell model. The algorithm has high accuraty and convergence, making it practical for engineering applications.
关键词
参数辨识 /
太阳电池 /
双二极管模型 /
改进树种算法 /
自适应步长因子
Key words
parameter identification /
solar cell /
double-diode model /
improved tree-seed algorithm /
adaptive step factor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] EBRAHIMI S M, SALAHSHOUR E, MALEKZADEH M, et al.Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm[J]. Energy, 2019, 179: 358-372.
[2] 何光宇, 范帅, 李祖毅, 等. 适应新型电力系统的电力互替品市场: (一)理念与构想[J]. 电力系统自动化, 2024, 48(9): 54-66.
HE G Y, FAN S, LI Z Y, et al.Substitute power product market suitable for new power system: part one conceptualization and consideration[J]. Automation of electric power systems, 2024, 48(9): 54-66.
[3] 丁坤, 陈富东, 翁帅, 等. 基于I-V特性灰色关联分析的光伏阵列健康状态评估[J]. 电网技术, 2021, 45(8): 3087-3095.
DING K, CHEN F D, WENG S, et al.Health state evaluation of photovoltaic array based on I-V characteristics and grey relational analysis[J]. Power system technology, 2021, 45(8): 3087-3095.
[4] 康童, 姚建刚, 金敏, 等. 采用改进型SOS算法的光伏组件模型参数辨识[J]. 计算机应用研究, 2020, 37(4): 1034-1042.
KANG T, YAO J G, JIN M, et al.Parameter identification of photovoltaic module models using improved SOS algorithm[J]. Application research of computers, 2020, 37(4): 1034-1042.
[5] 曾一婕, 王龙, 黄超. 基于Jaya-DA算法的太阳电池模型参数辨识[J]. 太阳能学报, 2022, 43(2): 198-202.
ZENG Y J, WANG L, HUANG C.Parameter identification of solar cell model based on Jaya-DA algorithm[J]. Acta energiae solaris sinica, 2022, 43(2): 198-202.
[6] 孙以泽, 彭乐乐, 孟婥, 等. 基于Lambert W函数的太阳电池组件参数提取及优化[J]. 太阳能学报, 2014, 35(8): 1429-1434.
SUN Y Z, PENG L L, MENG Z, et al.Parameters extraction and optimization for PV module based on Lambert W function[J]. Acta energiae solaris sinica, 2014, 35(8): 1429-1434.
[7] 朱显辉, 高彬, 师楠, 等. 基于Bezier曲线的薄膜太阳电池参数逆最小二乘辨识[J]. 太阳能学报, 2023, 44(6): 204-212.
ZHU X H, GAO B, SHI N, et al.Inverse lest squares identification of thin film solar cell parameters based on Bezier curves[J]. Acta energiae solaris sinica, 2023, 44(6): 204-212.
[8] APPELBAUM J, PELED A.Parameters extraction of solar cells: a comparative examination of three methods[J]. Solar energy materials and solar cells, 2014, 122: 164-173.
[9] 简献忠, 吴明伟, 肖儿良, 等. 蜂群算法在太阳电池组件参数辨识中的应用[J]. 太阳能学报, 2019, 40(3): 741-747.
JIAN X Z, WU M W, XIAO E L, et al.Application of bee colony algorithm in parameter identification of solar cell module[J]. Acta energiae solaris sinica, 2019, 40(3): 741-747.
[10] OSTADMOHAMMADI ARANI B, MIRZABEYGI P, SHARIAT PANAHI M.An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration-exploitation balance[J]. Swarm and evolutionary computation, 2013, 11: 1-15.
[11] RAJASEKAR N, KUMAR N K, VENUGOPALAN R. bacterial foraging algorithm based solar PV parameter estimation[J]. Solar energy, 2013, 97: 255-265.
[12] 吴忠强, 刘重阳, 赵德隆, 等. 基于IEHO算法的太阳电池模型参数辨识[J]. 太阳能学报, 2021, 42(9): 97-103.
WU Z Q, LIU C Y, ZHAO D L, et al.Parameter identification of solar cell model based on IEHO algorithm[J]. Acta energiae solaris sinica, 2021, 42(9): 97-103.
[13] KIRAN M S.TSA: Tree-seed algorithm for continuous optimization[J]. Expert systems with applications, 2015, 42(19): 6686-6698.
[14] 彭浩, 和丽芳. 基于改进树种算法的彩色图像多阈值分割[J]. 计算机科学, 2020, 47(S1): 220-225.
PENG H, HE L F.Multi-threshold segmentation for color image based on improved tree-seed algorithm[J]. Computer science, 2020, 47(S1): 220-225.
[15] 肖石林, 宣士斌, 温金玉. 基于改进树种算法的模糊聚类图像分割[J]. 广西民族大学学报(自然科学版), 2019, 25(1): 62-68.
XIAO S L, XUAN S B, WEN J Y.Fuzzy clustering image segmentation based on improved tree-seed algorithm[J]. Journal of Guangxi University for Nationalities (natural science edition), 2019, 25(1): 62-68.
[16] 贾文婷, 魏学业, 张俊红, 等. 光伏阵列双二极管简化模型的建立与仿真[J]. 北京交通大学学报, 2017, 41(2): 85-89.
JIA W T, WEI X Y, ZHANG J H, et al.Modeling and simulation of a photovoltaic two-diode array simplified model[J]. Journal of Beijing Jiaotong University, 2017, 41(2): 85-89.
基金
安徽省检测技术与节能装置重点实验室开放基金(JCKJ2022A10); 安徽省教育厅高校科研重点项目(2024AH050118)