该文提出一种基于多目标参数代理模型(MOPSM)的大功率铝绕组双馈风力发电机(AW-DFIG)电磁优化设计方法。首先,明确AW-DFIG的设计参数并通过最优拉丁超立方采样方法(OLHS)进行数据样本点采集;其次,通过比较不同代理模型的拟合精度,不断调整和优化模型参数,确定各目标参数的最佳代理模型;然后,利用非支配遗传算法(NSGA-Ⅱ对AW-DFIG进行电磁方案优化,并采用有限元(FEM)对优化后的方案进行有效验证;最后,研制一台10 MW,1720 r/min的实验样机,并进行相关的实验,验证该文所提基于多目标参数代理模型优化设计方法的可行性。
Abstract
With the increase in single-unit capacity, the electromagnetic design requirements for high-power aluminum-wound doubly-fed induction generators (AW-DFIG) have become more stringent. Traditional surrogate-model-base optimization strategies rely on a single surrogate model to establish the connection between multi-objective parameters and design variables, resulting in lower fitting accuracy for certain objective parameters, which affects the optimization results. Therefore, this paper proposes a high-power AW-DFIG electromagnetic optimization design method based on multi-objective parameter surrogate model (MOPSM). Firstly, the design variables of AW-DFIG are determined and the optimal Latin hypercube is used for sample collection; Secondly, by comparing the fitting accuracy of different surrogate models and continuously adjusting and optimizing model parameters, the optimal proxy model for each target parameter is determined; Then, the non dominated genetic algorithm (NSGA-Ⅱ) is used for electromagnetic optimization design, and the optimization scheme is verified through FEM analysis; Finally, a 10 MW, 1720 r/min experimental prototype is developed and relevant experiments are conducted to verify the feasibility of the multi-objective parameter surrogate model optimization design method proposed in this paper.
关键词
风力发电机 /
双馈感应发电机 /
电磁设计 /
数值模拟 /
代理模型 /
优化设计
Key words
wind turbine generators /
doubly-fed induction generator /
electromagnetic design /
numerical simulation /
surrogate model /
optimization design
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘豪, 牛姿懿, 宋亚凯. 永磁/笼障混合转子双定子风力发电机电磁设计与性能分析[J]. 太阳能学报, 2023, 44(5): 432-441.
LIU H, NIU Z Y, SONG Y K.Electromagnetic design and performance analysis of dual-stator wind power generator with permanent-magnet/cage-barrier mixed rotor[J]. Acta energiae solaris sinica, 2023, 44(5): 432-441.
[2] 辛征, 王秀和, 孙树敏. 新型高压内双馈风力发电机及其电磁特性研究[J]. 中国电机工程学报, 2015, 35(22): 5869-5876.
XIN Z, WANG X H, SUN S M.New type and high pressure inner doubly-fed induction wind generator and electromagnetic characteristics research[J]. Proceedings of the CSEE, 2015, 35(22): 5869-5876.
[3] WANG X Z, LIU D, POLINDER H.Improving annual energy production of doubly-fed induction generators[J]. IEEE transactions on energy conversion, 2021, 36(4): 3405-3413.
[4] 翟长春, 骆皓, 吴刚, 等. 分数槽集中绕组双馈感应电机电磁特性分析[J]. 微电机, 2023, 56(1): 18-23, 28.
ZHAI C C, LUO H, WU G, et al.Analysis of electromagnetic characteristics of fractional slot concentrative winding doubly-fed induction motor[J]. Micromotors, 2023, 56(1): 18-23, 28.
[5] 谢冰川, 张岳, 徐振耀, 等. 基于代理模型的电机多学科优化关键技术综述[J]. 电工技术学报, 2022, 37(20): 5117-5143.
XIE B C, ZHANG Y, XU Z Y, et al.Review on multidisciplinary optimization key technology of electrical machine based on surrogate models[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5117-5143.
[6] 戴睿, 张岳, 王惠军, 等. 基于Kriging模型的双十二相高速永磁发电机优化设计[J]. 中国电机工程学报, 2022, 42(2): 818-827.
DAI R, ZHANG Y, WANG H J, et al.Optimal design of dual 12-phase high speed permanent magnet rectified generator based on Kriging model[J]. Proceedings of the CSEE, 2022, 42(2): 818-827.
[7] 张邦富, 程明, 王飒飒, 等. 基于改进型代理模型优化算法的磁通切换永磁直线电机优化设计[J]. 电工技术学报, 2020, 35(5): 1013-1021.
ZHANG B F, CHENG M, WANG S S, et al.Optimal design of flux-switching permanent magnet linear machine based on improved surrogate-based optimization algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1013-1021.
[8] DAI R, ZHANG Y, WANG T Y, et al.Multi-objective optimisation of the HSPMM rotor based on the multi-physics surrogate model[J]. IET electric power applications, 2021, 15(12): 1616-1629.
[9] 刘洋, 宋宝, 周向东, 等. 轮辐式游标永磁电机分析与多目标优化设计[J]. 电机与控制学报, 2023, 27(9): 1-9.
LIU Y, SONG B, ZHOU X D, et al.Analysis and multi-objective optimization of spoke type vernier permanent-magnet machine[J]. Electric machines and control, 2023, 27(9): 1-9.
[10] XIA J K, QI M J, DONG T, et al.Parameter sensitivity analysis and optimization of electromagnetic force waves of fractional slot surface-mounted PM motor with external rotor[J]. IEEE access, 2023, 11: 91756-91766.
[11] 童水光, 何顺, 童哲铭, 等. 基于组合近似模型的轻量化设计方法[J]. 中国机械工程, 2020, 31(11): 1337-1343.
TONG S G, HE S, TONG Z M, et al.Lightweight design method based on combined approximation model[J]. China mechanical engineering, 2020, 31(11): 1337-1343.
[12] 曹永娟, 顾迪, 冯亮亮, 等. 无磁轭轴向磁通风力发电机多目标偏好优化设计[J]. 电机与控制学报, 2023, 27(9): 148-156.
CAO Y J, GU D, FENG L L, et al.Multi-objective preference optimization of yokeless axial-flux wind generator[J]. Electric machines and control, 2023, 27(9): 148-156.
[13] 李建伟, 张磊安, 黄雪梅, 等. 基于改进径向基神经网络的风电叶片模温串级PID控制算法[J]. 太阳能学报, 2022, 43(3): 330-335.
LI J W, ZHANG L A, HUANG X M, et al.Cascade PID control algorithm for wind turbine blade mold temperature based on improved RBF neural network[J]. Acta energiae solaris sinica, 2022, 43(3): 330-335.
[14] 万云发, 孙文磊, 王宏伟, 等. 基于Kriging模型与MOGA算法的风力机主轴轻量化设计[J]. 太阳能学报, 2022, 43(3): 388-395.
WAN Y F, SUN W L, WANG H W, et al.Lightweight design of wind turbine’s main shaft based on Kriging model and MOGA algorithm[J]. Acta energiae solaris sinica, 2022, 43(3): 388-395.
[15] HUA Y Z, ZHU H Q, GAO M, et al.Multiobjective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA-Ⅱ[J]. IEEE transactions on industrial electronics, 2021, 68(11): 10477-10487.
基金
太原市关键核心技术攻关“揭榜挂帅”项目(2024TYJB0122)