基于黏菌算法光储离并网系统控制

刘龙, 曹阳, 彭小峰, 李金展

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 259-266.

PDF(4584 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4584 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 259-266. DOI: 10.19912/j.0254-0096.tynxb.2024-0436
第二十七届中国科协年会学术论文

基于黏菌算法光储离并网系统控制

  • 刘龙, 曹阳, 彭小峰, 李金展
作者信息 +

CONTROL OF GRID-CONNECTED AND OFF-GRID PHOTOVOLTAIC ENERGY STORAGE SYSTEM BASED ON SLIME MOLD ALGORITHM

  • Liu Long, Cao Yang, Peng Xiaofeng, Li Jinzhan
Author information +
文章历史 +

摘要

介绍一种基于电导增量法的最大功率点跟踪算法、黏菌算法优化的储能电池和预同步虚拟同步发电机联合控制的光储离并网系统,该系统在离并网模式下均可运行,同时执行多功能操作,包括无功功率补偿、功率平衡和电能质量增强,不同工况下确保负载的不间断供能。所提系统采用电导增量法确定光伏阵列以最大功率输出,由黏菌算法优化的储能变换器稳定直流母线电压,通过虚拟同步发电机实现系统离并网的切换。仿真实验结果表明:基于黏菌算法优化的光储系统电网电压、电流总谐波失真分别为1.20%、2.13%,低于5%阈值限制的水平,验证了所提控制系统的有效性。

Abstract

This article introduces a photovoltaic energy storage system capable of operating both on-grid and off-grid, jointly controlled by a maximum power point tracking algorithm based on incremental conductance method, an energy storage battery optimized using the slime mold algorithm, and a pre-synchronized virtual synchronous generator. The system can operate in parallel off grid mode and perform multifunctional operations, including reactive power compensation, power balance, and power quality enhancement, ensuring uninterrupted power supply to the load under different operating conditions. The proposed system uses the incremental conductance method to determine the maximum power output of the photovoltaic array. The energy storage converter, optimized by the slime mold algorithm, stabilizes the DC bus voltage, and the system switches off the grid through a virtual synchronous generator. The simulation experiment results show that the total harmonic distortion of the voltage and current in the optical storage system optimized based on the slime mold algorithm is 1.20% and 2.13%, respectively, which is below the 5% threshold limit, verifying the effectiveness of the proposed control system.

关键词

光伏发电 / 同步发电机 / 谐波失真度 / 直流母线电压 / 黏菌算法

Key words

PV power generation / virtual synchronous generators / harmonic distortion / dc bus voltage / slime mold algorithm

引用本文

导出引用
刘龙, 曹阳, 彭小峰, 李金展. 基于黏菌算法光储离并网系统控制[J]. 太阳能学报. 2025, 46(7): 259-266 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0436
Liu Long, Cao Yang, Peng Xiaofeng, Li Jinzhan. CONTROL OF GRID-CONNECTED AND OFF-GRID PHOTOVOLTAIC ENERGY STORAGE SYSTEM BASED ON SLIME MOLD ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 259-266 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0436
中图分类号: TM71   

参考文献

[1] 武昭原, 刘婧宇, 周明, 等. 分散决策下分布式光伏储能系统外部性价值量化评估[J]. 电力系统自动化, 2024, 48(5): 38-47.
WU Z Y, LIU J Y, ZHOU M, et al.Quantitative evaluation of externality value for distributed photovoltaic energy storage system under decentralized decision-making[J]. Automation of electric power systems, 2024, 48(5): 38-47.
[2] CHANKAYA M, AHMAD A, HUSSAIN I, et al.Grid-interfaced photovoltaic-battery energy storage system with slime mold optimized adaptive seamless control[J]. IEEE transactions on industry applications, 2022, 58(6): 7728-7738.
[3] BOLLIPO R B, MIKKILI S, BONTHAGORLA P K.Hybrid, optimal, intelligent and classical PV MPPT techniques: a review[J]. CSEE journal of power and energy systems, 2021, 7(1): 9-33.
[4] 张纯江, 暴云飞, 孟宪慧, 等. 直流微网储能DC/DC变换器的自适应虚拟直流电机控制[J]. 电力系统保护与控制, 2023, 51(1): 12-20.
ZHANG C J, BAO Y F, MENG X H, et al.Adaptive virtual DC machine control for a DC microgrid energy storage DC/DC converter[J]. Power system protection and control, 2023, 51(1): 12-20.
[5] 石荣亮, 张群英, 王国斌, 等. 提高储能VSG并网有功响应性能的暂态阻尼策略[J]. 电力自动化设备, 2024, 44(1): 134-140.
SHI R L, ZHANG Q Y, WANG G B, et al.Transient damping strategies to improve grid-connected active response performance of energy storage VSG[J]. Electric power automation equipment, 2024, 44(1): 134-140.
[6] 李怡, 李永丽, 李松, 等. 基于VSG的光伏及混合储能系统功率分配与虚拟惯性控制[J]. 电力自动化设备, 2023, 43(7): 27-34.
LI Y, LI Y L, LI S, et al.Power distribution and virtual inertia control of photovoltaic and hybrid energy storage system based on VSG[J]. Electric power automation equipment, 2023, 43(7): 27-34.
[7] 李翼翔, 田震, 唐英杰, 等. 考虑构网型与跟网型逆变器交互的孤岛微电网小信号稳定性分析[J]. 电力自动化设备, 2022, 42(8): 11-18.
LI Y X, TIAN Z, TANG Y J, et al.Small-signal stability analysis of island microgrid considering interaction between grid-forming converter and grid-following converter[J]. Electric power automation equipment, 2022, 42(8): 11-18.
[8] 蔡海青, 郭琦, 杨仁炘, 等. 用于弱电网互联的柔性直流输电系统双端构网型控制[J]. 电力自动化设备, 2023, 43(9): 202-209.
CAI H Q, GUO Q, YANG R X, et al.Dual-end grid-forming control of flexible DC transmission system for weak grid interconnection[J]. Electric power automation equipment, 2023, 43(9): 202-209.
[9] WANG Y F, TAO L, WANG P, et al.Improved linear ADRC for hybrid energy storage microgrid output-side converter[J]. IEEE transactions on industrial electronics, 2022, 69(9): 9111-9120.
[10] 周雪松, 刘乾, 马幼捷, 等. 基于改进自抗扰的光伏并网逆变器直流母线电压控制[J]. 太阳能学报, 2022, 43(10): 65-72.
ZHOU X S, LIU Q, MA Y J, et al.DC-link voltage control of photovoltaic grid-connected inverter based on improved active disturbance rejection[J]. Acta energiae solaris sinica, 2022, 43(10): 65-72.
[11] JIE H M, ZHAO Z Y, ZENG Y, et al.A review of intentional electromagnetic interference in power electronics: conducted and radiated susceptibility[J]. IET power electronics, 2024, 17(12): 1487-1506.
[12] 马幼捷, 袁业沧, 周雪松, 等. 模型信息联合校正型自抗扰控制策略[J]. 太阳能学报, 2024, 45(3): 389-398.
MA Y J, YUAN Y C, ZHOU X S, et al.Model information combined correction active disturbance rejection voltage stabilizing control strategy[J]. Acta energiae solaris sinica, 2024, 45(3): 389-398.
[13] 朱作滨, 孙树敏, 丁月明, 等. 基于VSG的低电压穿越控制策略研究[J]. 太阳能学报, 2024, 45(2): 376-383.
ZHU Z B, SUN S M, DING Y M, et al.Study on low voltage ride through control strategy based on VSG[J]. Acta energiae solaris sinica, 2024, 45(2): 376-383.
[14] JUMANI T A, MUSTAFA M W, ALGHAMDI A S, et al.Swarm intelligence-based optimization techniques for dynamic response and power quality enhancement of AC microgrids: a comprehensive review[J]. IEEE access, 2020, 8: 75986-76001.
[15] KUMAR R, SINHA N.Modeling and control of dish-stirling solar thermal integrated with PMDC generator optimized by meta-heuristic approach[J]. IEEE access, 2020, 8: 26343-26355.
[16] DEEPAK K, MANDAL R K, VERMA V.Improving power quality in hybrid PV-wind operated standalone system with dual inverters by using TSK fuzzy controllers[C]//2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3), Srinagar Garhwal, India, 2023: 1-7.
[17] ALTURKI F A, OMOTOSO H O, AL-SHAMMA’A A A, et al. Novel manta rays foraging optimization algorithm based optimal control for grid-connected PV energy system[J]. IEEE access, 2020, 8: 187276-187290.
[18] VUYYURU U, MAITI S, CHAKRABORTY C, et al.Universal active power control converter for DC-microgrids with common energy storage[J]. IEEE open journal of industry applications, 2021, 2: 21-35.
[19] LI D Y, WANG T K, PAN W H, et al.A comprehensive review of improving power quality using active power filters[J]. Electric power systems research, 2021, 199: 107389.
[20] YAZDI S S H, MILIMONFARED J, FATHI S H, et al. A comprehensive VSG-based onshore FRT control strategy for OWFs with VSC-MT-HVDC transmission[J]. IEEE access, 2019, 9: 155788-155804.
[21] NASSER N, FAZELI M.Buffered-microgrid structure for future power networks; a seamless microgrid control[J]. IEEE transactions on smart grid, 2021, 12(1): 131-140.
[22] SALEH S A, OZKOP E, VALDES M E, et al.On the factors affecting battery unit contributions to fault currents in grid-connected battery storage systems[J]. IEEE transactions on industry applications, 2022, 58(3): 3019-3028.
[23] 朱良红, 张国强, 李宇欣, 等. 基于级联扩张观测器的永磁电机无传感器自抗扰控制策略[J]. 电工技术学报, 2022, 37(18): 4614-4624.
ZHU L H, ZHANG G Q, LI Y X, et al.Active disturbance rejection control for position sensorless permanent magnet synchronous motor drives based on cascade extended state observer[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4614-4624.
[24] LI S M, CHEN H L, WANG M J, et al.Slime mould algorithm: a new method for stochastic optimization[J]. Future generation computer systems, 2020, 111: 300-323.
[25] 姚文龙, 裴春博, 池荣虎, 等. 基于智能自学习控制的船舶微电网预同步控制策略[J]. 电力系统保护与控制, 2023, 51(6): 82-93.
YAO W L, PEI C B, CHI R H, et al.Pre-synchronization control strategy for a microgrid of merchant marine with intelligent self-learning control[J]. Power system protection and control, 2023, 51(6): 82-93.
[26] 王秀云, 刘国钦, 梁晓龙, 等. 基于改进虚拟同步发电机的预同步并网控制研究[J]. 东北电力大学学报, 2023, 43(1): 92-98.
WANG X Y, LIU G Q, LIANG X L, et al.Research on pre-synchronous grid-connection control based on improved virtual synchronous generator[J]. Journal of northeast electric power university, 2023, 43(1): 92-98.
[27] 邢鹏翔, 贾璇悦, 许长清, 等. 基于功率匹配和自适应惯性的VSG预同步控制方法[J]. 郑州大学学报(工学版), 2023, 44(3): 69-75.
XING P X, JIA X Y, XU C Q, et al.Pre-synchronization control method for virtual synchronous generator based on power matching and self-adaptive inertia[J]. Journal of Zhengzhou University (engineering science), 2023, 44(3): 69-75.

基金

重庆市教委基金(KJ120827); 重庆市教委科学技术项目(KJQN201901125); 重庆市基础与前沿研究计划(cstc2019jcy-msxm X0233); 重庆理工大学科研创新团队(2023TDZ003)

PDF(4584 KB)

Accesses

Citation

Detail

段落导航
相关文章

/