开孔参数对渗透型太阳能集热器性能影响数值模拟研究

谢士兴, 胡建军

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 758-765.

PDF(11583 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(11583 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 758-765. DOI: 10.19912/j.0254-0096.tynxb.2024-0441
第二十七届中国科协年会学术论文

开孔参数对渗透型太阳能集热器性能影响数值模拟研究

  • 谢士兴1,2, 胡建军1,2
作者信息 +

NUMERICAL SIMULATION OF EFFECT OF OPENING PARAMETERS ON UNGLAZED TRANSPIRED SOLAR AIR COLLECTOR

  • Xie Shixing1,2, Hu Jianjun1,2
Author information +
文章历史 +

摘要

基于射流冲击强化换热原理,设计一种超薄渗透型太阳能空气集热器,采用数值模拟的方法研究不同孔径和孔间距下集热器内部流场分布和集热效率。结果表明,孔分布不仅会影响集热器内微射流和横流主流交汇的流动特征,也决定内部温度分布的均匀性。同时孔径和间距对集热器热性能存在交互影响,当孔径为1 mm和间距为10 mm时,集热效率为89.20%,热工水力性能参数为15.6,综合性能最优。该集热器可替代建筑外立面装饰层,实现建筑保温与隔热,也为分布式太阳能农业干燥提供了新思路。

Abstract

The design of an ultra-thin permeable solar air collector is based on the principle of enhanced heat transfer through jet impingement. The flow field distribution and thermal efficiency of the collector are investigated through numerical simulation under various aperture sizes and hole spacings. The findings demonstrate that the hole distribution significantly not only influences the flow characteristics at the intersection of microjet and cross-flow mainstream in the collector, but also determines the uniformity of internal temperature distribution and heat collection efficiency. The thermal performance of the collector is influenced by both the aperture and the spacing, which exhibit interactive effects. When the aperture is 1 mm and the spacing is 10 mm, the heat collection efficiency is 89.20%, the thermal hydraulic performance parameter is 15.6, and the comprehensive performance is the best. The collector can replace the decorative layer of the building facade, realize the building thermal insulation and heat insulation, and also provide a novel approach for distributed solar agricultural drying.

关键词

太阳能 / 太阳能集热器 / 热效率 / 射流冲击 / 数值模拟 / 实验验证

Key words

solar energy / solar collectors / thermal efficiency / jet impingement / numerical simulation / experiment

引用本文

导出引用
谢士兴, 胡建军. 开孔参数对渗透型太阳能集热器性能影响数值模拟研究[J]. 太阳能学报. 2025, 46(7): 758-765 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0441
Xie Shixing, Hu Jianjun. NUMERICAL SIMULATION OF EFFECT OF OPENING PARAMETERS ON UNGLAZED TRANSPIRED SOLAR AIR COLLECTOR[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 758-765 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0441
中图分类号: TK513   

参考文献

[1] 闫云飞, 张智恩, 张力, 等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(S1): 47-56.
YAN Y F, ZHANG Z E, ZHANG L, et al.Application and utilization technology of solar energy[J]. Acta energiae solaris sinica, 2012, 33(S1): 47-56.
[2] 王武, 季杰, 于志, 等. 一种主、被动结合的太阳能空气采暖模拟研究[J]. 太阳能学报, 2015, 36(6): 1331-1336.
WANG W, JI J, YU Z, et al.Simulation study of solar air heating in active and passive mode[J]. Acta energiae solaris sinica, 2015, 36(6): 1331-1336.
[3] 杨舒婷, 叶天震, 马欣桐, 等. 波纹丝网型太阳能空气集热器热性能特性研究[J]. 太阳能学报, 2021, 42(1): 130-135.
YANG S T, YE T Z, MA X T, et al.Investigations on thermal performance characteristics of solar air collectors with corrugated wire mesh[J]. Acta energiae solaris sinica, 2021, 42(1): 130-135.
[4] WU S Y, XU L, XIAO L.Performance study of a novel multi-functional Trombe wall with air purification, photovoltaic, heating and ventilation[J]. Energy conversion and management, 2020, 203: 112229.
[5] 徐伟, 杨芯岩, 张时聪. 中国近零能耗建筑发展关键问题及解决路径[J]. 建筑科学, 2018, 34(12): 165-173.
XU W, YANG X Y, ZHANG S C.Key issues and solutions for the development of near-zero energy buildings in China[J]. Building science, 2018, 34(12): 165-173.
[6] YOUCEF-ALI S.Study and optimization of the thermal performances of the offset rectangular plate fin absorber plates, with various glazing[J]. Renewable energy, 2005, 30(2): 271-280.
[7] HU J J, LIU K T, MA L, et al.Parameter optimization of solar air collectors with holes on baffle and analysis of flow and heat transfer characteristics[J]. Solar energy, 2018, 174: 878-887.
[8] 王林军, 高章维, 张东, 等. 平板型双流道太阳能空气集热器热性能研究[J]. 太阳能学报, 2016, 37(10): 2562-2568.
WANG L J, GAO Z W, ZHANG D, et al.Thermal performance analysis of a flat plate solar air collector with double channels[J]. Acta energiae solaris sinica, 2016, 37(10): 2562-2568.
[9] 胡桂, 胡建军, 金健, 等. 利用反向射流提升无盖板型太阳能集热器性能[J]. 农业工程学报, 2022, 38(10): 232-238.
HU G, HU J J, JIN J, et al.Optimizing the performance of unglazed solar air collector with inverted jet impingement[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 232-238.
[10] 金健, 胡建军, 胡桂, 等. 利用条缝射流强化无盖板型太阳能集热器性能[J]. 太阳能学报, 2023, 44(3): 533-540.
JIN J, HU J J, HU G, et al.Performance enhancement of unglazed solar collector by slit jet[J]. Acta energiae solaris sinica, 2023, 44(3): 533-540.
[11] KUTSCHER C F, CHRISTENSEN C B, BARKER G M.Unglazed transpired solar collectors: heat loss theory[J]. Journal of solar energy engineering, 1993, 115(3): 182-188.
[12] LEON M A, KUMAR S.Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors[J]. Solar energy, 2007, 81(1): 62-75.
[13] ATTALLA M, SALEM M.Effect of nozzle geometry on heat transfer characteristics from a single circular air jet[J]. Applied thermal engineering, 2013, 51(1/2): 723-733.
[14] HAN B, GOLDSTEIN R J.Jet-impingement heat transfer in gas turbine systems[J]. Annals of the New York academy of sciences, 2001, 934(1): 147-161.
[15] 韦宏, 祖迎庆. 双层壁冷却结构中多排射流冲击冷却的换热和流阻特性[J]. 航空动力学报, 2021, 36(8): 1621-1632.
WEI H, ZU Y Q.Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of aerospace power, 2021, 36(8): 1621-1632.
[16] MOZUMDER A K, MITSUTAKE Y, MONDE M.Subcooled water jet quenching phenomena for a high temperature rotating cylinder[J]. International journal of heat and mass transfer, 2014, 68: 466-478.
[17] KUMAR M A, YUICHI M, MASANORI M.Experimental study of heat transfer for a rotating cylinder water jet impingement quenching[J]. Journal of energy and power engineering, 2013, 7(3): 411-422.
[18] BRIDEAU S A, COLLINS M R.Development and validation of a hybrid PV/Thermal air based collector model with impinging jets[J]. Solar energy, 2014, 102: 234-246.
[19] YU P P, ZHU K Q, SUN T, et al.Heat transfer rate and uniformity of mist flow jet impingement for glass tempering[J]. International journal of heat and mass transfer, 2017, 115: 368-378.
[20] KUTSCHER C F.Heat exchange effectiveness and pressure drop for air flow through perforated plates with and without crosswind[J]. Journal of heat transfer, 1994, 116(2): 391-399.
[21] GUNNEWIEK L H, HOLLANDS K G T, BRUNDRETT E. Effect of wind on flow distribution in unglazed transpired-plate collectors[J]. Solar energy, 2002, 72(4): 317-325.
[22] CHOW T T, PEI G, FONG K F, et al.Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover[J]. Applied energy, 2009, 86(3): 310-316.
[23] CROITORU C V, NASTASE I, BODE F I, et al.Thermodynamic investigation on an innovative unglazed transpired solar collector[J]. Solar energy, 2016, 131: 21-29.
[24] NADDA R, KUMAR A, MAITHANI R.Developing heat transfer and friction loss in an impingement jets solar air heater with multiple arc protrusion obstacles[J]. Solar energy, 2017, 158: 117-131.
[25] SHAHEED R, MOHAMMADIAN A, KHEIRKHAH GILDEH H.A comparison of standard k-ε and realizable k-ε turbulence models in curved and confluent channels[J]. Environmental fluid mechanics, 2019, 19(2): 543-568.

基金

国家自然科学基金重大项目(51890881); 中央引导地方科技发展资金项目(226Z1902G); 河北省自然科学基金(E2020203028)

PDF(11583 KB)

Accesses

Citation

Detail

段落导航
相关文章

/