ANOMALY DETECTION METHOD FOR WIND POWER BASED ON DISTRIBUTION CHARACTERISTICS
Miao Changxin1, Zhou Zhiwei1, Yang Qianxi1, Xi Jian2, Han Li1
Author information+
1. School of Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
A large amount of abnormal samples are obtained in the operational data collected from wind farms, which prevent the implementation of tasks such as state assessment and power prediction. To overcome this issue, a recognition method which selects targeted detection methods based on different abnormal distribution characteristics in measured wind turbine operational datasets is proposed in the article. The method considers the working state of the unit and uses an adaptive clustering algorithm with noise density, taking wind speed, power, and blade pitch angle as inputs, and the minimum average distance as the objective function to achieve parameter optimization of the algorithm. In order to verify the effectiveness of the model, the power curve of the cleaned data is fitted using the least squares method, and then the absolute average error is calculated and compared with other commonly used algorithms on actual datasets in China.
Miao Changxin, Zhou Zhiwei, Yang Qianxi, Xi Jian, Han Li.
ANOMALY DETECTION METHOD FOR WIND POWER BASED ON DISTRIBUTION CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 395-402 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0443
中图分类号:
TM71
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张沛, 左鹏, 谢桦, 等. 风电场异常数据辨识与重构技术综述[J]. 电力信息与通信技术, 2023, 21(4): 16-24. ZHANG P, ZUO P, XIE H, et al.Review of wind farm abnormal data identification and reconstruction techniques[J]. Electric power information and communication technology, 2023, 21(4): 16-24. [2] 吴永斌, 张建忠, 袁正舾, 等. 风电场风功率异常数据识别与清洗研究综述[J]. 电网技术, 2023, 47(6): 2367-2380. WU Y B, ZHANG J Z, YUAN Z X, et al.Review on identification and cleaning of abnormal wind power data for wind farms[J]. Power system technology, 2023, 47(6): 2367-2380. [3] ZOU M Z, DJOKIC S Z.A review of approaches for the detection and treatment of outliers in processing wind turbine and wind farm measurements[J]. Energies, 2020, 13(16): 4228. [4] 李莉, 梁袁, 林娜, 等. 考虑时空相关性的风电机组风速清洗方法[J]. 太阳能学报, 2024, 45(6): 461-469. LI L, LIANG Y, LIN N, ,et al. Data cleaning method considering temporal and spatial correlation for measured wind speed of wind turbines[J]. Acta energiae solaris sinica, 2024, 45(6): 461-469. [5] PANG G,SHEN C, CAO L,et al.Deep learning for anomaly detection:a review[J]. ACM computing surveys (CSUR), 2021, 54(2):1-38. [6] 江国乾, 周俊超, 武鑫, 等. 基于空洞因果卷积网络的风电机组异常检测[J]. 太阳能学报, 2023, 44(5): 368-375. JIANG G Q, ZHOU J C, WU X, et al.Wind turbine anomaly detection based on detailed causal convolution network[J]. Acta energiae solaris sinica, 2023, 44(5):368-375. [7] MORRISON R, LIU X L, LIN Z.Anomaly detection in wind turbine SCADA data for power curve cleaning[J]. Renewable energy, 2022, 184: 473-486. [8] 徐昊, 王永生, 许志伟, 等. 基于生成对抗网络多变量风电时间序列异常值处理[J]. 太阳能学报, 2022, 43(12): 300-311. XU H, WANG Y S, XU Z W, et al.Outlier processing of multivariable wind power time series based on generative adversarial network[J]. Acta energiae solaris sinica, 2022, 43(12): 300-311. [9] ZHAO Y N, YE L, WANG W S, et al.Data-driven correction approach to refine power curve of wind farm under wind curtailment[J]. IEEE transactions on sustainable energy, 2018, 9(1): 95-105. [10] 邹同华, 高云鹏, 伊慧娟, 等. 基于Thompson tau-四分位和多点插值的风电功率异常数据处理[J]. 电力系统自动化, 2020, 44(15): 156-162. ZOU T H, GAO Y P, YI H J, et al.Processing of wind power abnormal data based on Thompson tau-quartile and multi-point interpolation[J]. Automation of electric power systems, 2020, 44(15): 156-162. [11] 李特, 王荣喜, 高建民. 基于改进DBSCAN的风电机组SCADA异常数据识别方法[J]. 西安交通大学学报,2024(3): 1-10. LI T,WANG R X,GAO J M.A method for wind turbine SCADA abnormal data recognition based on improved DBSCAN[J]. Journal of Xi’an Jiaotong University,2024(3):1-10. [12] LONG H, SANG L W, WU Z J, et al.Image-based abnormal data detection and cleaning algorithm via wind power curve[J]. IEEE transactions on sustainable energy, 2020, 11(2): 938-946. [13] LONG H, XU S H, GU W.An abnormal wind turbine data cleaning algorithm based on color space conversion and image feature detection[J]. Applied energy, 2022, 311: 118594. [14] LUO Z H, FANG C Y, LIU C L, et al.Method for cleaning abnormal data of wind turbine power curve based on density clustering and boundary extraction[J]. IEEE transactions on sustainable energy, 2022, 13(2): 1147-1159. [15] 杨茂, 杨春霖, 杨琼琼, 等. 计及风向信息的风电功率异常数据识别研究[J]. 太阳能学报, 2019, 40(11): 3265-3272. YANG M, YANG C L, YANG Q Q, et al.Study on data recognition of wind power abnormality considering wind direction information[J]. Acta energiae solaris sinica, 2019, 40(11): 3265-3272. [16] 曾祥军, 冯琛, 杨明, 等. 考虑运行状态相似性的风电机组数据异常检测方法[J]. 电力系统自动化, 2022, 46(11): 170-180. ZENG X J, FENG C, YANG M, et al.Data anomaly detection method for wind turbines considering operation state similarity[J]. Automation of electric power systems, 2022, 46(11): 170-180. [17] DAO P B.Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data[J]. Renewable energy, 2022, 185: 641-654. [18] YAN J, ZHANG H, LIU Y Q, et al.Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling[J]. Applied energy, 2019, 239: 1356-1370. [19] 沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018, 33(14): 3353-3361. SHEN X J, FU X J, ZHOU C C, et al.Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361. [20] FALAHIAZAR Z,BAGHERI A,RESHADI M.Determining the parameters of DBSCAN automatically using the multi-objective genetic algorithm[J]. Journal of information science and engineering, 2021, 37(1):157-183.