针对多数元启发式算法面对质子交换膜燃料电池电压模型参数辨识问题时易发生“早熟”导致参数辨识精度较低的问题,该文在改进蜉蝣算法基础上提出一种混沌映射和自适应Levy飞行的改进蜉蝣算法。首先,引入Logistic方程生成混沌序列,映射到问题空间中提高种群初始化的遍历性;其次,在蜉蝣的速度更新中加入自适应Levy飞行算法,利用Levy飞行大概率小步长,小概率大步长的特性帮助算法跳出局部最优值;此外,加入自适应策略动态调整蜉蝣速度,进一步缩短算法寻优时间;最后,通过4种测试函数在两种不同维度下的寻优结果验证算法的有效性。将所提算法应用于SR-12燃料电池电压模型参数辨识中,结果表明:相较于蜉蝣算法、改进的蜉蝣算法和粒子群算法,所提算法针对加入/未加入白噪声的实验数据均具有更快的收敛速度、更高的辨识精度以及更强的鲁棒性。
Abstract
To address the issue that most heuristic algorithms are prone to converge prematurely when facing the voltage model parameter identification problem of proton exchange membrane fuel cell (PEMFC), resulting in low parameter identification accuracy, this paper proposes an improved mayfly algorithm based on chaos mapping and adaptive Levy flight (LLIMA). Firstly, the logistic equation is introduced to generate chaotic sequences, which are then mapped to the problem space to enhance the exploration capability of population initialization. Secondly, the adaptive Levy flight algorithm is added to the velocity update of the mayfly, which helps the algorithm escape from the local optimum by utilizing the property of Levy flight of large probability with small step size and small probability with large step size. Additionally, the inclusion of an adaptive strategy dynamically adjusts the mayfly velocities, further shortening the optimization time of the algorithm. Finally, the effectiveness of the algorithm is verified by the optimization results of four test functions in two different dimensions. Applying the LLIMA algorithm to parameter identification of the SR-12 fuel cell voltage model demonstrates that compared to the mayfly algorithm, improved mayfly algorithm, and particle swarm algorithm, the proposed LLIMA algorithm achieves higher identification accuracy, faster convergence speed, and stronger robustness for experimental data both with and without added white noise.
关键词
质子交换膜燃料电池 /
元启发式算法 /
辨识 /
Levy飞行 /
混沌映射
Key words
proton exchange membrane fuel cell (PEMFC) /
heuristic algorithms /
identification /
Levy flight /
chaotic map
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杜真真, 王珺, 王晶, 等. 质子交换膜燃料电池关键材料的研究进展[J]. 材料工程, 2022, 50(12): 35-50.
DU Z Z, WANG J, WANG J, et al.Research progress of key materials in proton exchange membrane fuel cell[J]. Journal of materials engineering, 2022, 50(12): 35-50.
[2] 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.
GAO W T, LEI Y J, ZHANG X, et al.An overview of proton exchange membrane fuel cell[J]. Chemical industry and engineering progress, 2022, 41(3): 1539-1555.
[3] 胡捷. 质子交换膜燃料电池建模与控制研究[D]. 合肥: 合肥工业大学, 2019.
HU J.Modeling and control of proton exchange membrane fuel cells[D]. Hefei: Hefei University of Technology, 2019.
[4] 马睿, 任子俊, 谢任友, 等. 基于模型特征分析的质子交换膜燃料电池建模研究综述[J]. 中国电机工程学报, 2021, 41(22): 7712-7730.
MA R, REN Z J, XIE R Y, et al.A comprehensive review for proton exchange membrane fuel cell modeling based on model feature analysis[J]. Proceedings of the CSEE, 2021, 41(22): 7712-7730.
[5] 杨宇伦, 凌铭. 基于改进鸡群优化算法的质子交换膜燃料电池模型参数辨识[J]. 太阳能学报, 2023, 44(2): 269-278.
YANG Y L, LING M.Parameter identification of proton exchange membrane fuel cells model based on improved chicken swarm optimization algorithm[J]. Acta energiae solaris sinica, 2023, 44(2): 269-278.
[6] 孙成硕, 戚志东, 叶伟琴, 等. 基于ALMBO算法的PEMFC分数阶时域子空间模型研究[J]. 太阳能学报, 2023, 44(1): 467-474.
SUN C S, QI Z D, YE W Q, et al.Research on fractional order time domain subspace model of PEMFC based on ALMBO algorithm[J]. Acta energiae solaris sinica, 2023, 44(1): 467-474.
[7] 王新, 侯永平, 王要娟, 等. 基于马群优化的燃料电池极化曲线拟合算法[J]. 电池, 2023, 53(2): 132-136.
WANG X, HOU Y P, WANG Y J, et al.Fitting algorithm of polarization curve for fuel cell based on horse herd optimization[J]. Battery bimonthly, 2023, 53(2): 132-136.
[8] 杨博, 曾春源, 陈义军, 等. 极限学习机及其在质子交换膜燃料电池参数辨识中的应用[J]. 上海交通大学学报, 2023, 57(4): 482-494.
YANG B, ZENG C Y, CHEN Y J, et al.Extreme learning machine and its application in parameter identification of proton exchange membrane fuel cell[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 482-494.
[9] CHENG J X, ZHANG G X.Parameter fitting of PEMFC models based on adaptive differential evolution[J]. International journal of electrical power & energy systems, 2014, 62: 189-198.
[10] ZERVOUDAKIS K, TSAFARAKIS S.A mayfly optimization algorithm[J]. Computers & industrial engineering, 2020, 145: 106559.
[11] 刘公致, 吴琼, 王光义, 等. 改进型Logistic混沌映射及其在图像加密与隐藏中的应用[J]. 电子与信息学报, 2022, 44(10): 3602-3609.
LIU G Z, WU Q, WANG G Y, et al.A improved logistic chaotic map and its application to image encryption and hiding[J]. Journal of electronics & information technology, 2022, 44(10): 3602-3609.
[12] 张玉, 卢子广, 卢泉, 等. 基于Levy飞行改进鸟群算法的光伏直流微电网优化配置研究[J]. 太阳能学报, 2021, 42(5): 214-220.
ZHANG Y, LU Z G, LU Q, et al.Research on optimal configuration of photovoltaic DC microgrid based on Levy flight improved bird swarm algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 214-220.
[13] 徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520.
XU B.Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm[J]. CIESC journal, 2021, 72(3): 1512-1520.
基金
内蒙古自治区自然科学基金(2022MS05032); 内蒙古自治区直属高校基本科研业务费项目(JY20220121)