风电机组传动链试验平台六自由度加载技术综述

林勇刚, 曹忠鹏, 李丹阳, 徐志良, 付德义, 陈博文

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 403-412.

PDF(2141 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2141 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 403-412. DOI: 10.19912/j.0254-0096.tynxb.2024-0450
第二十七届中国科协年会学术论文

风电机组传动链试验平台六自由度加载技术综述

  • 林勇刚1, 曹忠鹏1, 李丹阳1, 徐志良2, 付德义3, 陈博文1
作者信息 +

REVIEW OF SIX-DEGREE-OF-FREEDOM LOADING TECHNOLOGY ON WIND TURBINE DRIVE CHAIN TEST PLATFORM

  • Lin Yonggang1, Cao Zhongpeng1, Li Danyang1, Xu Zhiliang2, Fu Deyi3, Chen Bowen1
Author information +
文章历史 +

摘要

针对加载载荷来源,介绍传动链试验平台的发展现状,并进一步综述机组运行过程中所受的六自由度载荷,明确载荷计算需要考虑的标准工况和外界条件。针对加载方式,从大扭矩和大惯量两个方面分析扭矩模拟的关键技术,并总结国内外现有的非扭矩载荷模拟技术,归纳出4种典型的非扭矩加载方案。针对加载准确性,计及非扭矩液压加载系统非线性、参数不确定性的特点,介绍提高加载精度和频响的普遍手段,以及数字多缸加载和导向静压加载的前沿发展方向。传动链试验平台在风电机组设计和可靠性提升方面起到至关重要的作用,随着风能利用技术的发展虚拟样机技术有望成为未来试验台降低研发成本和缩短研发周期的新型发展趋势。

Abstract

This paper reviews the current development status of drive chain test platforms based on the source of loading load, and further summarizes the six-degree-of-freedom loads experienced during the operation of the wind turbines, clarifying the standard operating conditions and external conditions that need to be considered in load calculations. Regarding the loading methods, the key technologies of torque simulation are analyzed from two aspects: high torque and high inertia. The existing non-torque load simulation technologies at home and abroad are summarized, and four typical non-torque loading schemes are summarized. To address the nonlinearity and parameter uncertainties in non-torque hydraulic loading systems affecting loading accuracy, common methods for enhancing loading accuracy and frequency response are introduced, as well as the cutting-edge development directions of digital multi-cylinder loading and guided static pressure loading. The drive chain testing platform plays a crucial role in the design and reliability improvement of the wind turbine. With the development of wind energy utilization technology, virtual prototype technology is expected to become a new development trend for future test platforms to reduce research and development costs and shorten research and development cycles.

关键词

风电机组 / 载荷 / 扭矩 / 非扭矩 / 加载准确性 / 传动链试验平台

Key words

wind turbines / load / torque / non-torque / loading accuracy / drive chain test platform

引用本文

导出引用
林勇刚, 曹忠鹏, 李丹阳, 徐志良, 付德义, 陈博文. 风电机组传动链试验平台六自由度加载技术综述[J]. 太阳能学报. 2025, 46(7): 403-412 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0450
Lin Yonggang, Cao Zhongpeng, Li Danyang, Xu Zhiliang, Fu Deyi, Chen Bowen. REVIEW OF SIX-DEGREE-OF-FREEDOM LOADING TECHNOLOGY ON WIND TURBINE DRIVE CHAIN TEST PLATFORM[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 403-412 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0450
中图分类号: TK83   

参考文献

[1] BP. BP enegy outlook2023 edition[EB/OL]. [2024-05-21]. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html.
[2] LV Z H, LI Q, TANG W J, et al.Study on key technical schemes for grid-connected performance testing of offshore wind turbines[J]. Journal of physics: conference series, 2022, 2166(1): 012039.
[3] NJIRI J G, SÖFFKER D. State-of-the-art in wind turbine control: Trends and challenges[J]. Renewable and sustainable energy reviews, 2016, 60: 377-393.
[4] VORPAHL F, SCHWARZE H, FISCHER T, et al.Offshore wind turbine environment, loads, simulation, and design[J]. Wiley interdisciplinary reviews: energy and environment, 2013, 2(5): 548-570.
[5] MCKENNA R, LEYE P O V D, FICHTNER W. Key challenges and prospects for large wind turbines[J]. Renewable and sustainable energy reviews, 2016, 53: 1212-1221.
[6] ARTIGAO E, MARTÍN-MARTÍNEZ S, HONRUBIA-ESCRIBANO A, et al. Wind turbine reliability: a comprehensive review towards effective condition monitoring development[J]. Applied energy, 2018, 228: 1569-1583.
[7] 巫发明, 杨从新, 王清, 等. 大型风力机风轮气动不平衡的特性研究与验证[J]. 太阳能学报, 2021, 42(1): 192-197.
WU F M, YANG C X, WANG Q, et al.Research and verification of aerodynamic unbalance characteristics for large wind turbine[J]. Acta energiae solaris sinica, 2021, 42(1): 192-197.
[8] 赵恒真. 风电机五自由度电液加载系统仿真与实验研究[D]. 杭州: 浙江大学, 2017.
ZHAO H Z.Simulation and experimental study of five-degree-of-freedom electrohydraulic loading system for wind turbines[D]. Hangzhou: Zhejiang University, 2017.
[9] CHINCHILLA M, ARNALTES S, RODRIGUEZ-AMENEDO J L. Laboratory set-up for wind turbine emulation[C]//2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT’04. Hammamet, Tunisia, 2005: 553-557.
[10] NESHATI M, ZUGA A, JERSCH T, et al.Hardware-in-the-loop drive train control for realistic emulation of rotor torque in a full-scale wind turbine nacelle test rig[C]//2016 European Control Conference (ECC). Aalborg, Denmark, 2016: 1481-1486.
[11] AVEROUS N R, STIENEKER M, KOCK S, et al.Development of a 4 MW full-size wind-turbine test bench[J]. IEEE journal of emerging and selected topics in power electronics, 2017, 5(2): 600-609.
[12] Powertrain Facilities[EB/OL]. [2024-03-01].https://ore.catapult.org.uk/what-we-do/testing-validation/powertrain-facilities.
[13] Dominion Energy Innovation Center[EB/OL]. [2024-03-01].https://www.clemson.edu/innovation-campuses/charleston/energy/wind-turbine-test-beds.html.
[14] Nacelle Testing and Examination of Electrical Characteristics[EB/OL]. [2024-03-01].https://www.iwes.fraunhofer.de/en/test-centers-and-measurements/nacelle-testing-and-certification-of-electrical-characteristics.html.
[15] Inauguration at lindø offshore renewables center[EB/OL]. [2024-03-01].https://www.lorc.dk/test-facilities.
[16] 北极星风力发电网. 全球最大16 MW整机传动实验平台:让风机触达真正的性能边界[EB/OL].[2024-05-21]. https://news.bjx.com.cn/html/20230608/1311726.shtml.
Bjx. The world’s largest 16 MW complete drive chain test platform: allowing wind turbines to reach true performance boundaries[EB/OL].[2024-05-21]. https://news.bjx.com.cn/html/20230608/1311726.shtml.
[17] 北极星风力发电机网. 全国首个!运达股份13 MW级陆上风电机组全功率试验平台投入使用[EB/OL]. [2024-05-21]. https://news.bjx.com.cn/html/20230608/1311726.shtml.
Bjx. First in the country! yunda Group’s 13 MW onshore wind turbine full power test platform has been put into use[EB/OL]. [2024-05-21]. https://news.bjx.com.cn/html/20230608/1311726.shtml.
[18] 殷秀兴. 风电系统主传动链的载荷复现与功率平滑[D]. 杭州: 浙江大学, 2016.
YIN X X Loading reproduction and power smoothing for wind turbine drive-train[D].YIN X X Loading reproduction and power smoothing for wind turbine drive-train[D]. Hangzhou: Zhejiang University, 2016.
[19] 中国能源报. 我国首个国家级海上风电研究与试验检测基地开工建设[EB/OL].[2024-05-21]. https://mp.weixin.qq.com/s/j4rgKEJta3uUN5Z6N2bnkw.
China Energy News.Construction of China’s first national offshore wind power research and testing base[EB/OL]. [2024-05-21].https://mp.weixin.qq.com/s/j4rgKEJta3uUN5Z6N2bnkw.
[20] 广东新闻联播. 国际最大全球领先40兆瓦级风电实验平台落户汕头启动建设[EB/OL].[2024-05-21]. https://mp.weixin.qq.com/s/cTHfvrWhNqrTgnt21IuAsw.
Guangdong News Network.The largest global leading 40 MW drive chain test platform has settled in Shantou and started construction[EB/OL]. [2024-05-21].https://mp.weixin.qq.com/s/cTHfvrWhNqrTgnt21IuAsw.
[21] 彭文冠. 风电传动系统机电耦合实验台设计与机电耦合模型实验验证[D]. 重庆: 重庆大学, 2022.
PENG W G.Design of wind power transmission system electromechanical coupling test bench and experimental verification of the electromechanical coupling model[D]. Chongqing: Chongqing University, 2022.
[22] International Electrotechnical Commission, Wind energy generation systems-part 1: design requirements: IEC 61400-1[S]. Switzerland: International Electrotechnical Commission, 2019.
[23] 陈结, 陈换过, 肖志奇, 等. 基于工况辨识的风电机组主传动系统运行状态监测[J]. 太阳能学报, 2024, 45(2): 77-85.
CHEN J, CHEN H G, XIAO Z Q, et al.Operational state monitoring of wind turbine main transmission system based on working condition recognition[J]. Acta energiae solaris sinica, 2024, 45(2): 77-85.
[24] GB/T 42600—2023, 风能发电系统风力发电机组塔架和基础设计要求[S].
GB/T 42600—2023, Wind energy generation systems-Tower and foundation design requirements of wind turbines[S].
[25] 胡日军. 舟山群岛海域泥沙运移及动力机制分析[D]. 青岛: 中国海洋大学, 2009.
HU R J.Sediment transport and dynamic mechanism in the Zhoushan Archipelago sea area[D]. Qingdao: Ocean University of China, 2009.
[26] SUN J L, CHEN Z, YU H, et al.Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore wind turbines[J]. Renewable energy, 2022, 199: 71-86.
[27] HE R Y, YANG H X, SUN S L, et al.A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control[J]. Applied energy, 2022, 326: 120013.
[28] GUO Y, KELLER J, LACAVA W.Planetary gear load sharing of wind turbine drivetrains subjected to non-torque loads[J]. Wind energy, 2015, 18(4): 757-768.
[29] NAM J S, PARK Y J, JO S J, et al.Development of a gearbox test rig with non-torque loading capacity[J]. Journal of mechanical science and technology, 2016, 30(4): 1713-1722.
[30] NEAMMANEE B, SIRISUMRANNUKUL S, CHATRATANA S.Development of a wind turbine simulator for wind generator testing[J]. International energy journal, 2007, 8(1): 21-28.
[31] 陈棋, 李丹阳, 刘宏伟, 等. 风电机组传动链地面测试系统载荷模拟技术[J]. 浙江大学学报(工学版), 2021, 55(2): 299-306.
CHEN Q, LI D Y, LIU H W, et al.Load simulation technology for ground test system of wind turbine drive chain[J]. Journal of Zhejiang University (engineering science), 2021, 55(2): 299-306.
[32] 马蕊, 孟岩峰, 胡书举, 等. 基于双拖动电机的风力机动态特性模拟技术[J]. 控制与信息技术, 2018(3): 17-21.
MA R, MENG Y F, HU S J, et al.Dynamic behavior simulation technology of the wind turbine dragging with double motors[J]. Control and information technology, 2018(3): 17-21.
[33] SCHKODA R F, FOX C.Integration of mechanical and electrical hardware for testing full scale wind turbine nacelles[C]//2014 Clemson University Power Systems Conference. Clemson, SC, USA, 2014: 1-8.
[34] 王培玲, 董宏. ZDQ制动器试验台的开发设计[J]. 机械设计, 2006, 23(5): 45-47.
WANG P L, DONG H.Development design for ZDQ brake test bench[J]. Journal of machine design, 2006, 23(5): 45-47.
[35] 宫文斌, 刘安龙, 江阔, 等. 机械惯量混合电模拟技术研究[J]. 农业机械学报, 2009, 40(1): 208-212.
GONG W B, LIU A L, JIANG K, et al.Research on the technique of mechanical inertia mix electric simulation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 208-212.
[36] 朱斑斓. 汽车变速器试验台电惯量模拟研究[D]. 武汉: 武汉理工大学, 2016.
ZHU B L.Research on electric inertia simulation of transmission test bench[D]. Wuhan: Wuhan University of Technology, 2016.
[37] 罗竹辉, 周晓军, 严伟鑫, 等. 风力发电机组试验台模拟加载装置: CN102156047B[P].2012-09-05.
LUO Z H, ZHOU X J, YAN W X, et al. Loading simulation device for test bed of wind turbine: CN102156047B[P].2012-09-05.
[38] 赵斌, 郭伟伟, 葛磊, 等. 新型流量自平衡泵控非对称液压缸运行特性试验研究[J]. 机械工程学报, 2020, 56(8): 257-264.
ZHAO B, GUO W W, GE L, et al.Experiment study on operation characteristics of new flow self-balancing pump controlled asymmetric hydraulic cylinder[J]. Journal of mechanical engineering, 2020, 56(8): 257-264.
[39] 李毅波, 曾云龙, 潘晴, 等. 考虑压力效应的液压缸摩擦模型研究[J]. 农业机械学报, 2020, 51(11): 418-426.
LI Y B, ZENG Y L, PAN Q, et al.Pressure dependent friction model of hydraulic cylinder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 418-426.
[40] LI D Y, LIN Y G, GU Y J, et al.Loading methodology and dynamics analysis of the digital-servo hydraulic cylinders group in large wind turbine drivetrain test bench[J]. Sustainable energy technologies and assessments, 2024, 64: 103730.
[41] 左林, 邓江洪, 李为. 连铸机结晶器振动液压缸失效原因及处理对策[J]. 液压与气动, 2013(1): 76-78.
ZUO L, DENG J H, LI W.Failure causes and countermeasure of oscillation hydraulic cylinder in caster mould[J]. Chinese hydraulics & pneumatics, 2013 (1): 76-78.
[42] LIN Y G, LI D Y, GU Y J, et al.Multi-cylinder electrohydraulic digital loading technology for reproduction of large load[J]. Mechatronics, 2021, 76: 102559.
[43] SAWANO H.Relationship between fluid properties and bearing stiffness in water hydrostatic bearing[J]. International journal of automation technology, 2020, 14(1): 73-79.
[44] KUMAR V, SHARMA S C.Combined influence of couple stress lubricant, recess geometry and method of compensation on the performance of hydrostatic circular thrust pad bearing[J]. Proceedings of the institution of mechanical engineers, part J: Journal of engineering tribology, 2017, 231(6): 716-733.
[45] SHAO J P, YANG X D, ZHOU L M, et al.Numerical simulation of integrated deformation of heavy hydrostatic thrust bearing and experimental research[C]//2009 International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou, China, 2009: 45-48.

基金

国家重点研发计划项目(2023YFB4203000)

PDF(2141 KB)

Accesses

Citation

Detail

段落导航
相关文章

/