高效HJT太阳电池的吸杂工艺研究

张俊兵, 蒋秀林, 陈孝业, 王凯, 李元昊, 李娅

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 582-588.

PDF(2117 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2117 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 582-588. DOI: 10.19912/j.0254-0096.tynxb.2024-0451
第二十七届中国科协年会学术论文

高效HJT太阳电池的吸杂工艺研究

  • 张俊兵1, 蒋秀林1,2, 陈孝业1, 王凯1, 李元昊1, 李娅1
作者信息 +

RESEARCH ON GETTERING PROCESS OF HIGH-EFFICIENCY HJT SOLAR CELLS

  • Zhang Junbing1, Jiang Xiulin1,2, Chen Xiaoye1, Wang Kai1, Li Yuanhao1, Li Ya1
Author information +
文章历史 +

摘要

该文研究吸杂工艺对HJT太阳电池性能提升的影响。首先,分析硅片在硅棒不同位置的质量差异,研究发现C、O浓度的分布与少子寿命的变化存在一定的关联性,并受分凝系数的影响;其次,研究吸杂对硅片的影响,发现吸杂后的硅片体内金属杂质含量比吸杂前低,从而使得硅片的少子寿命得到提升,而C、O浓度的变化很小;进而,研究不同吸杂工艺下硅片的HJT太阳电池性能变化,结果显示1 h以上和单双面的不同吸杂工艺条件差异较小;最后,研究吸杂前后的不同少子寿命对HJT太阳电池性能的影响,并探索硅片少子寿命的下限。研究结果表明,吸杂工艺可降低太阳电池成品片性能对原料片品质的依赖,这将有利于成品片的效率稳定,降低原料片成本,是高效HJT太阳电池降本增效的有效方法。

Abstract

This paper investigates the effect of the gettering process on the performance enhancement of HJT solar cells. Firstly, the performance difference of silicon wafers at different positions of the silicon rods was analyzed, and it was found that the distribution of C and O concentration was correlated with the changes in the minority lifetime. Secondly, the effect of gettering process on silicon wafers was investigated, and it was found that the concentration of metal impurities in the bulk of wafers was decreased after gettering, which leads to the enhancement of the minority lifetime of the wafers and IV characteriftics. Further more, different gettering process conditions on the solar cells’ performance were investigated, and the results showed minimal differences among these conditions in terms of solar cell performance. Finally, the efficiency difference of different minority lifetime ranges before and after gettering was studied, and the lower limit of the minority lifetime of silicon wafers was explored. The study shows that the gettering process could reduce the quality and cost requirements of raw silicon wafers for gettering process can decrease the concentration of metal impurities and SRH recombination, which is conducive to the efficiency stability of the production line and a very suitable cost down process and an effective efficiency enhancement method for the mass production of HJT high-efficiency solar cells.

关键词

太阳电池 / 吸杂 / 扩散 / 寿命

Key words

solar cell / gettering / diffusion / lifetime

引用本文

导出引用
张俊兵, 蒋秀林, 陈孝业, 王凯, 李元昊, 李娅. 高效HJT太阳电池的吸杂工艺研究[J]. 太阳能学报. 2025, 46(7): 582-588 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0451
Zhang Junbing, Jiang Xiulin, Chen Xiaoye, Wang Kai, Li Yuanhao, Li Ya. RESEARCH ON GETTERING PROCESS OF HIGH-EFFICIENCY HJT SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 582-588 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0451
中图分类号: TM914.4   

参考文献

[1] ADACHI D, HERNÁNDEZ J L, YAMAMOTO K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency[J]. Applied physics letters, 2015, 107(23): 233506.
[2] YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al.Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature energy, 2017, 2: 17032.
[3] 姚宇波, 张丽平, 刘文柱, 等. 不同背反射结构在硅异质结太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(10): 37-42.
YAO Y B, ZHANG L P, LIU W Z, et al.Research on application of different back reflection structures in silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2022, 43(10): 37-42.
[4] LIU Y Q, LI Y J, WU Y L, et al.High-efficiency silicon heterojunction solar cells: materials, devices and applications[J]. Materials science and engineering: R: reports, 2020, 142: 100579.
[5] 杨煜豪, 刘文柱, 张丽平, 等. 晶硅异质结太阳电池nc-Si:H/nc-SiOx:H叠层窗口层研究[J]. 太阳能学报, 2023, 44(8): 203-207.
YANG Y H, LIU W Z, ZHANG L P, et al.Research on nc-Si:H/nc-SiOx:H stacked thin films as silicon heterojunction solar cell window layer[J]. Acta energiae solaris sinica, 2023, 44(8): 203-207.
[6] LIN H, YANG M, RU X N, et al.Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers[J]. Nature energy, 2023, 8(8): 789-799.
[7] BATTAGLIA C, CUEVAS A, DE WOLF S.High-efficiency crystalline silicon solar cells: status and perspectives[J]. Energy & environmental science, 2016, 9(5): 1552-1576.
[8] LIU A Y, SUN C, SIO H C, et al.Gettering of transition metals in high-performance multicrystalline silicon by silicon nitride films and phosphorus diffusion[J]. Journal of applied physics, 2019, 125(4): 043103.
[9] YANG Z S, KRÜGENER J, FELDMANN F, et al. Impurity gettering in polycrystalline-silicon based passivating contacts: the role of oxide stoichiometry and pinholes[J]. Advanced energy materials, 2022, 12(24): 2103773.
[10] LIU A Y, YAN D, WONG-LEUNG J, et al.Impurity gettering by diffusion-doped polysilicon passivating contacts for silicon solar cells[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). Waikoloa, HI, USA, 2018: 1667-1671.
[11] LIU A Y, YAN D, PHANG S P, et al.Effective impurity gettering by phosphorus-and boron-diffused polysilicon passivating contacts for silicon solar cells[J]. Solar energy materials and solar cells, 2018, 179: 136-141.
[12] WU Z Y, ZHONG G X, ZHOU X C, et al.Upgrade of the hot zone for large-size high-performance multi-crystalline silicon ingot casting[J]. Journal of crystal growth, 2016, 441: 58-63.
[13] LIU A Y, MACDONALD D.Impurity gettering by atomic-layer-deposited aluminium oxide films on silicon at contact firing temperatures[J]. Physica status solidi (RRL)-rapid research letters, 2018, 12(3): 1700430.
[14] SCHÖN J, SCHUBERT M C, WARTA W, et al. Analysis of simultaneous boron and phosphorus diffusion gettering in silicon[J]. Physica status solidi (a), 2010, 207(11): 2589-2592.
[15] CHO E, OK Y W, DAHAL L D, et al.Comparison of POCl3 diffusion and phosphorus ion-implantation induced gettering in crystalline Si solar cells[J]. Solar energy materials and solar cells, 2016, 157: 245-249.
[16] LIU A Y, PHANG S P, MACDONALD D.Gettering in silicon photovoltaics: a review[J]. Solar energy materials and solar cells, 2022, 234: 111447.
[17] SUH D.Efficient implementation of multiple drive-in steps in thermal diffusion of phosphorus for PERC solar cells[J]. Current applied physics, 2018, 18(2): 178-182.
[18] LEE H J, KANG M G, CHOI S J, et al.Characteristics of silicon solar cell emitter with a reduced diffused phosphorus inactive layer[J]. Current applied physics, 2013, 13(8): 1718-1722.
[19] AL-AMIN M, MURPHY J D.Combining low-temperature gettering with phosphorus diffusion gettering for improved multicrystalline silicon[J]. IEEE journal of photovoltaics, 2017, 7(6): 1519-1527.
[20] QU X L, HE Y C, QU M H, et al.Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells[J]. Nature energy, 2021, 6(2): 194-202.
[21] LIU W Z, SHI J H, ZHANG L P, et al.Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells[J]. Nature energy, 2022, 7(5): 427-437.
[22] ZHAO J, KÖNIG M, YAO Y, et al. >24% silicon heterojunction solar cells on Meyer burger’s on mass production tools and how wafer material impacts cell parameters[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). Waikoloa, HI, USA, 2018: 1514-1519.
[23] PÉRICHAUD I. Gettering of impurities in solar silicon[J]. Solar energy materials and solar cells, 2002,72(1-4): 315-326.
[24] ZHU F Z, WANG D L, BIAN J T, et al.Phosphorous diffusion gettering of n-type CZ silicon wafers for improving the performances of silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2016, 157: 74-78.

PDF(2117 KB)

Accesses

Citation

Detail

段落导航
相关文章

/