以国电投江苏盐城柔性光伏示范基地五排三跨光伏阵列为研究对象,设计开展上下表面同步刚体测压风洞试验,分析脉动风压三维空间相关性,并基于Copula理论建立光伏阵列上下表面脉动风压边缘分布模型和联合概率分布模型。研究表明:在0°和180°最不利风向角下,光伏阵列整体脉动风压最大值均出现在#3排迎风前缘,光伏组件上、下缘整体脉动风压分别由上、下表面脉动风压起控制作用;以核密度函数作为边缘分布模型,Frank Copula和Gumbel Copula函数分别是构建光伏阵列上/下缘“整体-上/下表面”脉动风压联合概率分布模型的最优函数;提出的联合概率分布模型能够准确描述光伏阵列脉动风压二元分布特性,可实现基于光伏组件单一表面脉动风压有效预测整体脉动风压。
Abstract
Taking the 5×3 PV arrays of State Power Investment Group Flexible PV Demonstration Base in Yancheng, Jiangsu as the research object, synchronous rigid body pressure wind tunnel tests were designed and carried out on the upper and lower surfaces. The three-dimensional spatial correlation of fluctuating wind load was analyzed, the edge distribution model and joint probability distribution model of fluctuating wind load on the upper and lower surfaces of PV arrays were established based on Copula theory. Research has shown that under the most unfavorable wind direction angles of 0 ° and 180 °, the maximum overall fluctuating wind load of PV arrays occurs at the windward leading edge of row #3. The overall fluctuating wind load on the upper and lower edges of PV panels is controlled by the upper and lower surfaces respectively; Taking the kernel density function as the edge distribution model, Frank Copula and Gumbel Copula functions are the optimal functions for constructing the joint probability distribution models of “overall- upper/lower surfaces” fluctuating wind load on the upper/lower edge of PV arrays respectively; The proposed joint probability distribution models can accurately describe the binary distribution characteristics of fluctuating wind load in PV arrays, and achieve effective prediction of overall fluctuating wind load based on single surfaces of PV panels.
关键词
光伏系统 /
风洞 /
风压 /
空间相关性 /
联合概率分布
Key words
photovoltaic systems /
wind tunnels /
wind load /
spatial correlation /
joint probability distribution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LI W J, KE S T, CAI Z B, et al.Instability mechanism and failure criteria of large-span flexible PV support arrays under severe wind[J]. Solar energy, 2023, 264: 112000.
[2] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[3] ASCE/SE 7-10, Minimum design loads for buildings and other structures[S].
[4] HE X H, DING H, JING H Q, et al.Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104275.
[5] 窦珍珍. 光伏组件影响因素的风洞试验及数值模拟研究[D]. 西安: 长安大学, 2014.
DOU Z Z.The study of the influence factors on photovoltaic modules wind tunnel test and numerical simulation[D]. Xi’an: Changan University, 2014.
[6] STATHOPOULOS T, ZISIS I, XYPNITOU E.Local and overall wind pressure and force coefficients for solar panels[J]. Journal of wind engineering and industrial aerodynamics, 2014, 125: 195-206.
[7] BROWNE M T L, GIBBONS M P M, GAMBLE S, et al. Wind loading on tilted roof-top solar arrays: the parapet effect[J]. Journal of wind engineering and industrial aerodynamics, 2013, 123: 202-213.
[8] 李寿科, 李寿英, 陈政清. 太阳电池板风荷载试验研究[J]. 太阳能学报, 2015, 36(8): 1884-1889.
LI S K, LI S Y, CHEN Z Q.Experimental investigation of wind loading of solar panels[J]. Acta energiae solaris sinica, 2015, 36(8): 1884-1889.
[9] 马文勇, 孙高健, 刘小兵, 等. 太阳能光伏板风荷载分布模型试验研究[J]. 振动与冲击, 2017, 36(7): 8-13.
MA W Y, SUN G J, LIU X B, et al.Tests for wind load distribution model of solar panels[J]. Journal of vibration and shock, 2017, 36(7): 8-13.
[10] 高亮, 窦珍珍, 白桦, 等. 光伏组件风荷载影响因素分析[J]. 太阳能学报, 2016, 37(8): 1931-1937.
GAO L, DOU Z Z, BAI H, et al.Analysis of influence factors for wind lode of PV module[J]. Acta energiae solaris sinica, 2016, 37(8): 1931-1937.
[11] KIM Y C, TAMURA Y, YOSHIDA A, et al.Experimental investigation of aerodynamic vibrations of solar wing system[J]. Advances in structural engineering, 2018, 21(15): 2217-2226.
[12] 李寿科, 张雪, 方湘璐, 等. 双坡光伏车棚屋面风荷载特性[J]. 太阳能学报, 2019, 40(2): 530-537.
LI S K, ZHANG X, FANG X L, et al.Wind loads on solar car parking gable shed[J]. Acta energiae solaris sinica, 2019, 40(2): 530-537.
[13] KOPP G A.Wind loads on low-profile, tilted, solar arrays placed on large, flat, low-rise building roofs[J]. Journal of structural engineering, 2014, 140(2): 04013057.
[14] WANG J X, VAN PHUC P, YANG Q S, et al.LES study of wind pressure and flow characteristics of flat-roof-mounted solar arrays[J]. Journal of wind engineering and industrial aerodynamics, 2020, 198: 104096.
[15] 楼文娟, 单弘扬, 杨臻, 等. 超大型阵列光伏板体型系数遮挡效应研究[J]. 建筑结构学报, 2021, 42(5): 47-54.
LOU W J, SHAN H Y, YANG Z, et al.Study of shielding effect on shape coefficient of super-large photovoltaic arrays[J]. Journal of building structures, 2021, 42(5): 47-54.
[16] GB 50797—2012, 光伏发电站设计标准[S].
GB 50797—2012, Code for design of photovoltaic power station[S].
[17] NSCP2010, National structural code of the Philippines[S].
[18] NB/T 10115—2018, 光伏支架结构设计规程[S].
NB/T 10115—2018, Code for design of photovoltaic modules support structures[S].
[19] T/CSEE0394-2023, 柔性光伏支架结构设计规程[S].
T/CSEE0394-2023, Design specification for flexible support structures of photovoltaic modules[S].
[20] 包道日娜, 高帆, 王鹏, 等. 基于Copula函数的叶片载荷相关性研究及预测分析[J]. 太阳能学报, 2023, 44(12): 323-329.
BAO D R N, GAO F, WANG P, et al. Research and forecasting analysis of blade load correlation based on Copula function[J]. Acta energiae solaris sinica, 2023, 44(12): 323-329.
[21] 黄宇, 张冰哲, 庞慧珍, 等. 基于混合Copula优化算法的风速预测方法研究[J]. 太阳能学报, 2022, 43(10): 192-201.
HUANG Y, ZHANG B Z, PANG H Z, et al.Research on wind speed forecasting method based on hybrid Copula optimization algorithm[J]. Acta energiae solaris sinica, 2022, 43(10): 192-201.
基金
国家自然科学基金NSFC-RGC 合作研究重点项目(52321165649); 江苏省杰出青年科学基金(BK20211518); 江苏省研究生科研与实践创新计划(KYCX22_0374)