基于涡声理论的分析方法,对兆瓦级风电机组叶片气动噪声的产生机理进行研究。首先,对风电机组叶片和流场区域进行建模和网格划分,应用计算流体力学(CFD)数值模拟计算的方式对风电机组气动噪声的指向性进行分析,并通过试验验证,得出风电机组气动噪声为偶极子特性,以验证数值模拟的准确性。然后,对数值模拟计算的流场与声场分布情况进行分析和对比,研究风电机组叶片气动噪声产生的主要成因。结果表明,风电机组叶片的气动噪声声源主要分布在叶片展向方向上65%~95%跨段内。同时,风电机组叶片气动噪声的声源主要由流体运动引起的涡旋运动所导致的,在叶片跨段65%~95%的范围内涡旋运动的分布规律与叶片气动噪声的分布规律十分吻合。
Abstract
Based on the vortex sound theory, the generation mechanism of turbine blade aerodynamic noise from wind turbine blades is studied. In this paper, wind turbine blades and flow field regions are modeled and meshed, and the directivity of wind turbine aerodynamic noise is analyzed by computational fluid dynamics(CFD) numerical simulation. Through test verification, it is concluded that wind turbine aerodynamic noise is a dipole characteristic, and the accuracy of numerical simulation is verified. Then, the distribution of flow field and sound field calculated by numerical simulation are analyzed and compared, and the main causes of wind turbine blade aerodynamic noise are studied. The results show that the aerodynamic noise sources of wind turbine blades are mainly distributed in 65%~95% span of the blade spanwise direction. At the same time, the sound source of wind turbine blade aerodynamic noise is mainly caused by vortex movement caused by fluid movement, and the distribution pattern of vortex movement in the range of 65%~95% of blade span is very consistent with the distribution law of blade aerodynamic noise.
关键词
气动噪声 /
风电机组 /
风电叶片 /
涡声理论 /
涡旋运动 /
偶极子 /
数值模拟
Key words
aerodynamic noise /
wind turbines /
wind turbine blades /
vortex sound theory /
vortex motion /
dipole characteristic /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU W Y.A review on wind turbine noise mechanism and de-noising techniques[J]. Renewable energy, 2017, 108: 311-320.
[2] HOWE M.Acoustics and aerodynamic sound[M]. Cambridge, UK: Cambridge University Press, 2014.
[3] HOWE M S.Theory of vortex sound[M]. New York: Cambridge University Press, 2003.
[4] VIOLATO D, MOORE P, BRYON K, et al.Application of Powell’s analogy for the prediction of vortex-pairing sound in a low-Mach number jet based on time-resolved planar and tomographic PIV[C]//16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, 2010: 3959.
[5] 欧阳华, 田杰, 吴亚东, 等. 基于涡声理论的低速轴流风机气动噪声研究[J]. 工程热物理学报, 2009, 30(5): 765-768.
OUYANG H, TIAN J, WU Y D, et al.Research of aerodynamic noise source of low speed axial fans based on vortex-sound theory[J]. Journal of engineering thermophysics, 2009, 30(5): 765-768.
[6] 王春旭, 张涛, 侯国祥, 等.基于涡声理论的水下射流噪声预报(英文)[J]. 船舶力学, 2010, 14(6): 670-677.
WANG C X, ZHANG T, HOU G X, et al.Noise prediction of submerged free jet based on theory of vortex sound[J]. Journal of Ship Mechanics, 2010, 14(6): 670-677.
[7] ZHANG N, XIE H, WANG X, et al.Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory[J]. Journal of hydrodynamics, ser B, 2016, 28(2): 255-266.
[8] 王毅刚, 黄晓胜, 危巍, 等. 涡声理论在汽车A柱气动噪声优化中的应用[J]. 噪声与振动控制, 2017, 37(2): 107-112.
WANG Y G, HUANG X S, WEI W, et al.Aerodynamic noise optimization of vehicle’s A-pillar based on vortex sound theory[J]. Noise and vibration control, 2017, 37(2): 107-112.
[9] 张玲, 谷豪飞. 弧形锯齿尾缘对叶片气动噪声影响及机理的研究[J]. 太阳能学报, 2023, 44(1): 171-178.
ZHANG L, GU H F.Study on influence of arc serrated trailing edge on blade aerodynamic noise and its mechanism[J]. Acta energiae solaris sinica, 2023, 44(1): 171-178.
[10] GUO C, GAO M.Investigation on the flow-induced noise propagation mechanism of centrifugal pump based on flow and sound fields synergy concept[J]. Physics of fluids, 2020, 32(3): 035115.
[11] GUO C, GAO M, WANG J Y, et al.The effect of blade outlet angle on the acoustic field distribution characteristics of a centrifugal pump based on Powell vortex sound theory[J]. Applied acoustics, 2019, 155: 297-308.
[12] SI Q R, ALI A, TIAN D, et al.Prediction of hydrodynamic noise in ducted propeller using flow field-acoustic field coupled simulation technique based on novel vortex sound theory[J]. Ocean engineering, 2023, 272: 113907.
[13] 张立茹, 牛佳佳, 王雪丽, 等. 基于流固耦合偏航下风力机尾迹湍流特征的研究[J]. 太阳能学报, 2022, 43(7): 340-346.
ZHANG L R, NIU J J, WANG X L, et al.Research on turbulence characteristics of wind turbine wake under yaw condition based on fluid-structure coupling[J]. Acta energiae solaris sinica, 2022, 43(7): 340-346.
[14] 陈猛飞. 基于涡声理论的微型导管推进器水动力噪声特性研究[D]. 镇江: 江苏大学, 2022.
CHEN M F.Study on hydrodynamic noise characteristics of micro duct propeller based on vortex sound theory[D]. Zhenjiang: Jiangsu University, 2022.
[15] 郭畅. 基于Powll涡声理论的离心泵内三维流场与诱导声场耦合机制研究[D]. 济南: 山东大学, 2020.
GUO C.Study on coupling mechanism of three-dimensional flow field and induced sound field in centrifugal pump based on Powll vortex sound theory[D]. Jinan: Shandong University, 2020.
[16] 王先智. 物理流体力学[M]. 北京: 清华大学出版社, 2018: 85-93.
WANG X Z.Physical hydrodynamics[M]. Beijing: Tsinghua University Press, 2018: 85-93.
[17] KRÁLIK J. CFD simulation of air flow over an object with gable roof, revised with Y+ approach[J]. Transactions of the VŠB-Technical University of Ostrava, civil engineering series, 2016, 16(2): 85-94.
[18] 张海澜. 理论声学[M]. 2版. 北京: 高等教育出版社, 2012: 245-379.
ZHANG H L.Theoretical acoustics[M]. 2nd ed. Beijing: Higher Education Press, 2012: 245-379.
[19] 翟国庆, 徐婧, 郑玥, 等. 风电机组噪声预测[J]. 中国环境科学, 2012, 32(5): 927-932.
ZHAI G Q, XU J, ZHENG Y, et al.Noise prediction of wind turbines[J]. China environmental science, 2012, 32(5): 927-932.
基金
国家自然科学基金(51875198); 湖南省教育厅重点项目(23A0360); 湘潭市科技局科技攻关项目(GX-YB20221004)