用于聚光太阳能发电系统的钙基热化学储能研究进展

于戈, 彭晓光, 吕哲

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 766-777.

PDF(2569 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2569 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 766-777. DOI: 10.19912/j.0254-0096.tynxb.2024-0485
第二十七届中国科协年会学术论文

用于聚光太阳能发电系统的钙基热化学储能研究进展

  • 于戈, 彭晓光, 吕哲
作者信息 +

RESEARCH PROGRESS ON CALCIUM-BASED THERMOCHEMICAL ENERGY STORAGE FOR CONCENTRATED SOLAR POWER SYSTEMS

  • Yu Ge, Peng Xiaoguang, Lyu Zhe
Author information +
文章历史 +

摘要

钙循环体系(CaL)由于其安全性高、成本低、能量存储效率高和工作温度范围广等优势,在聚光太阳能发电的热化学储能系统中显示出巨大的发展潜力。该综述总结国内外近年来的研究进展,最后指出现阶段钙基储热剂存在循环反应过程中循环稳定性差、吸光性差、易磨损浪费等问题,并对未来研究方向进行展望,具体包括深入研究材料微观结构、设计更真实的循环反应器、考虑工艺制备过程的整体性、技术性、经济性。

Abstract

The calcium looping (CaL) system demonstrates significant potential for use in concentrated solar power generation. This potential is attributed to its high safety, low-cost, high-energy storage efficiency, and wide operating temperature range. The review summarizes recent domestic and international research progress and highlights that calcium-based heat storage agents currently face challenges such as poor cyclic stability, inadequate light absorption, and high wear during cyclic reactions. Additionally, the review anticipates future research directions, including in-depth studies of material microstructure, designing more realistic cyclic reactors, and considering the integrality, technology, and economy of the preparation process.

关键词

太阳能 / 太阳能发电 / 热化学储能 / 储热剂 / 造粒成型 / 反应器

Key words

solar energy / solar power generation / thermochemical energy storage / heat carriers / granulation / reactors

引用本文

导出引用
于戈, 彭晓光, 吕哲. 用于聚光太阳能发电系统的钙基热化学储能研究进展[J]. 太阳能学报. 2025, 46(7): 766-777 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0485
Yu Ge, Peng Xiaoguang, Lyu Zhe. RESEARCH PROGRESS ON CALCIUM-BASED THERMOCHEMICAL ENERGY STORAGE FOR CONCENTRATED SOLAR POWER SYSTEMS[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 766-777 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0485
中图分类号: TK512   

参考文献

[1] CHEN H H, KANG H Y, LEE A H I. Strategic selection of suitable projects for hybrid solar-wind power generation systems[J]. Renewable and sustainable energy reviews, 2010, 14(1): 413-421.
[2] 叶茂林, 谭烽华, 李宇萍, 等. 百吨级生物质混合醇系统能耗和温室气体排放分析[J]. 太阳能学报, 2023, 44(1): 361-368.
YE M L, TAN F H, LI Y P, et al.Analysis of energy consumption and greenhouse gas emission of 100 t/a mixed alcohol system from biomass[J]. Acta energiae solaris sinica, 2023, 44(1): 361-368.
[3] LEWIS N S, NOCERA D G.Powering the planet: chemical challenges in solar energy utilization[J]. Proceedings of the national academy of sciences of the United States of America, 2006, 103(43): 15729-15735.
[4] 梅惠, 高丙团, 曹泽宇, 等. 含CSP电站的风光火储联合外送系统优化配置[J]. 太阳能学报, 2022, 43(12): 124-133.
MEI H, GAO B T, CAO Z Y, et al.Optimal allocation of wind-photovoltaic-thermal-storage combined transmission system with CSP station[J]. Acta energiae solaris sinica, 2022, 43(12): 124-133.
[5] 王亚蓉, 丁静, 陆建峰, 等. 太阳模拟器加热下甲烷重整管式反应器的热化学储能特性[J]. 太阳能学报, 2021, 42(11): 163-168.
WANG Y R, DING J, LU J F, et al.Thermochemical energy storage characteristics of methane steam reforming in tube reactor with focused solar simulation[J]. Acta energiae solaris sinica, 2021, 42(11): 163-168.
[6] PALACIOS A, BARRENECHE C, NAVARRO M E, et al.Thermal energy storage technologies for concentrated solar power:a review from a materials perspective[J]. Renewable energy, 2020, 156: 1244-1265.
[7] GIL A, MEDRANO M, MARTORELL I, et al.State of the art on high temperature thermal energy storage for power generation. part 1: concepts, materials and modellization[J]. Renewable and sustainable energy reviews, 2010, 14(1): 31-55.
[8] 廖文俊, 丁柳柳. 熔融盐蓄热技术及其在太阳热发电中的应用[J]. 装备机械, 2013(3): 55-59.
LIAO W J, DING L L.Application of molten salt thermal storage in solar thermal power[J]. The magazine on equipment machinery, 2013(3): 55-59.
[9] KHAN M M A, IBRAHIM N I, MAHBUBUL I M, et al. Evaluation of solar collector designs with integrated latent heat thermal energy storage: a review[J]. Solar energy, 2018, 166: 334-350.
[10] KHAMLICH I, ZENG K, FLAMANT G, et al.Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market[J]. Renewable and sustainable energy reviews, 2021, 139: 110583.
[11] 汉京晓, 杨勇平, 侯宏娟. 太阳能热发电的显热蓄热技术进展[J]. 可再生能源, 2014, 32(7): 901-905.
HAN J X, YANG Y P, HOU H J.Review on sensible heat thermal energy storage in solar thermal generation[J]. Renewable energy resources, 2014, 32(7): 901-905.
[12] SHAHKARAMI S, AZARGOHAR R, DALAI A K, et al.Breakthrough CO2 adsorption in bio-based activated carbons[J]. Journal of environmental sciences, 2015, 34: 68-76.
[13] DELISE T, TIZZONI A C, FERRARA M, et al.Thermophysical, environmental, and compatibility properties of nitrate and nitrite containing molten salts for medium temperature CSP applications: a critical review[J]. Journal of the European Ceramic Society, 2019, 39(1): 92-99.
[14] JIANG F, ZHANG L L, SHE X H, et al.Skeleton materials for shape-stabilization of high temperature salts based phase change materials: a critical review[J]. Renewable and sustainable energy reviews, 2020, 119: 109539.
[15] 应振镇, 杨天锋, 陈冬, 等. 用于太阳能超临界CO2布雷顿循环的流态化颗粒换热试验与模拟[J]. 太阳能学报, 2022, 43(3): 274-281.
YING Z Z, YANG T F, CHEN D, et al.Experiment and simulation of fluidizing-particle heat exchanger for supercritical CO2 brayton cycle of CSP[J]. Acta energiae solaris sinica, 2022, 43(3): 274-281.
[16] ZHANG P, CHENG J H, JIN Y, et al.Evaluation of thermal physical properties of molten nitrate salts with low melting temperature[J]. Solar energy materials and solar cells, 2018, 176: 36-41.
[17] BONK A, SAU S, URANGA N, et al.Advanced heat transfer fluids for direct molten salt line-focusing CSP plants[J]. Progress in energy and combustion science, 2018, 67: 69-87.
[18] FERNÁNDEZ A G, MUÑOZ-SÁNCHEZ B, NIETO-MAESTRE J, et al. High temperature corrosion behavior on molten nitrate salt-based nanofluids for CSP plants[J]. Renewable energy, 2019, 130: 902-909.
[19] CHACARTEGUI R, ALOVISIO A, ORTIZ C, et al.Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle[J]. Applied energy, 2016, 173: 589-605.
[20] SCHMIDT M, LINDER M.Power generation based on the Ca(OH)2/CaO thermochemical storage system: experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design[J]. Applied energy, 2017, 203: 594-607.
[21] QU X H, LI Y, LI P, et al.The development of metal hydrides using as concentrating solar thermal storage materials[J]. Frontiers of materials science, 2015, 9(4): 317-331.
[22] DIZAJI H B, HOSSEINI H.A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications[J]. Renewable and sustainable energy reviews, 2018, 98: 9-26.
[23] 肖刚, 邵娜, 向铎, 等. 用于高温储能的CuO/Cu2O反应特性与改性优化[J]. 太阳能学报, 2021, 42(4): 293-298.
XIAO G, SHAO N, XIANG D, et al.Reaction characteristics and modification optimization of CuO/Cu2O for high temperature energy storage[J]. Acta energiae solaris sinica, 2021, 42(4): 293-298.
[24] SATTLER C, ROEB M, AGRAFIOTIS C, et al.Solar hydrogen production via sulphur based thermochemical water-splitting[J]. Solar energy, 2017, 156: 30-47.
[25] EDWARDS J H, DO K T, MAITRA A M, et al.The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat[J]. Energy conversion and management, 1996, 37(6/7/8): 1339-1344.
[26] DUNN R, LOVEGROVE K, BURGESS G.A review of ammonia-based thermochemical energy storage for concentrating solar power[J]. Proceedings of the IEEE, 2012, 100(2): 391-400.
[27] BAYON A, BADER R, JAFARIAN M, et al.Techno-economic assessment of solid-gas thermochemical energy storage systems for solar thermal power applications[J]. Energy, 2018, 149: 473-484.
[28] JIN S, DONG G H, LUO J M, et al.Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst[J]. Applied catalysis B: environmental, 2018, 227: 24-34.
[29] HANAK D P, MANOVIC V.Economic feasibility of calcium looping under uncertainty[J]. Applied energy, 2017, 208: 691-702.
[30] BENITEZ-GUERRERO M, SARRION B, PEREJON A, et al.Large-scale high-temperature solar energy storage using natural minerals[J]. Solar energy materials and solar cells, 2017, 168: 14-21.
[31] 刘江, 李牧, 李璟涛, 等. 钙基热化学储能体系的研究进展[J]. 电站系统工程, 2018, 34(5): 13-17.
LIU J, LI M, LI J T, et al.Research progress in Ca-based thermochemical heat storage system[J]. Power system engineering, 2018, 34(5): 13-17.
[32] ORTIZ C, VALVERDE J M, CHACARTEGUI R, et al.The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in concentrating solar power plants[J]. Renewable and sustainable energy reviews, 2019, 113: 109252.
[33] BARKER R.The reactivity of calcium oxide towards carbon dioxide and its use for energy storage[J]. Journal of applied chemistry and biotechnology, 1974, 24(4/5): 221-227.
[34] REICH L, YUE L, BADER R, et al.Towards solar thermochemical carbon dioxide capture via calcium oxide looping: a review[J]. Aerosol and air quality research, 2014, 14(2): 500-514.
[35] HAN R, GAO J H, WEI S Y, et al.High-performance CaO-based composites synthesized using a space-confined chemical vapor deposition strategy for thermochemical energy storage[J]. Solar energy materials and solar cells, 2020, 206: 110346.
[36] ZHAI R R, LI C, QI J W, et al.Thermodynamic analysis of CO2 capture by calcium looping process driven by coal and concentrated solar power[J]. Energy conversion and management, 2016, 117: 251-263.
[37] CHARITOS A, RODRÍGUEZ N, HAWTHORNE C, et al. Experimental validation of the calcium looping CO2 capture process with two circulating fluidized bed carbonator reactors[J]. Industrial & engineering chemistry research, 2011, 50(16): 9685-9695.
[38] DA Y, XUAN Y M, TENG L, et al.Calcium-based composites for direct solar-thermal conversion and thermochemical energy storage[J]. Chemical engineering journal, 2020, 382: 122815.
[39] HU Y C, HE W Z, CAO J X, et al.Decorating CaO with dark Ca2MnO4 for direct solar thermal conversion and stable thermochemical energy storage[J]. Solar energy materials and solar cells, 2022, 248: 111977.
[40] LU H, KHAN A, SMIRNIOTIS P G.Relationship between structural properties and CO2 capture performance of CaO-based sorbents obtained from different organometallic precursors[J]. Industrial & engineering chemistry research, 2008, 47(16): 6216-6220.
[41] LIU W Q, LOW N W L, FENG B, et al. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture[J]. Environmental science & technology, 2010, 44(2): 841-847.
[42] LUO T, LIU S L, LUO C, et al.Effect of different organic compounds on the preparation of CaO-based CO2 sorbents derived from wet mixing combustion synthesis[J]. Chinese journal of chemical engineering, 2021, 36: 157-169.
[43] SÁNCHEZ JIMÉNEZ P E, PEREJÓN A, BENÍTEZ GUERRERO M, et al. High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants[J]. Applied energy, 2019, 235: 543-552.
[44] QUAN C, CORTAZAR M, SANTAMARIA L, et al.Valorization of waste eggshell for CO2 sorbents production by sol-gel citric acid treatment in a fixed-bed reactor[J]. Journal of CO2 utilization, 2023, 75: 102562.
[45] VALVERDE J M, MIRANDA-PIZARRO J, PEREJÓN A, et al. Calcium-looping performance of steel and blast furnace slags for thermochemical energy storage in concentrated solar power plants[J]. Journal of CO2 utilization, 2017, 22: 143-154.
[46] LI Y J, SU M Y, XIE X, et al.CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis[J]. Applied energy, 2015, 145: 60-68.
[47] KIM S M, LIAO W C, KIERZKOWSKA A M, et al.In situ XRD and dynamic nuclear polarization surface enhanced NMR spectroscopy unravel the deactivation mechanism of CaO-based, Ca3Al2O6-stabilized CO2 sorbents[J]. Chemistry of materials, 2018, 30(4): 1344-1352.
[48] BAI S B, SUN J, LIU L, et al.Dolomite-derived composites doped with binary ions for direct solar thermal conversion and stabilized thermochemical energy storage[J]. Solar energy materials and solar cells, 2022, 239: 111659.
[49] ZHOU Y, ZHOU Z J, LIU L, et al.Enhanced thermochemical energy storage stability of CaO-based composite pellets incorporated with a Zr-based stabilizer[J]. Energy & fuels, 2021, 35(22): 18778-18788.
[50] ZHANG X Y, LI Z G, PENG Y, et al.Investigation on a novel CaO-Y2O3 sorbent for efficient CO2 mitigation[J]. Chemical engineering journal, 2014, 243: 297-304.
[51] WANG S P, FAN S S, FAN L J, et al.Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J]. Environmental science & technology, 2015, 49(8): 5021-5027.
[52] LUO C, ZHENG Y, YIN J J, et al.Effect of support material on carbonation and sulfation of synthetic CaO-based sorbents in calcium looping cycle[J]. Energy & fuels, 2013, 27(8): 4824-4831.
[53] ZHAO M, YANG X S, CHURCH T L, et al.Novel CaO-SiO2 sorbent and bifunctional Ni/Co-CaO/SiO2 complex for selective H2 synthesis from cellulose[J]. Environmental science & technology, 2012, 46(5): 2976-2983.
[54] BAI S B, SUN J, ZHOU Z J, et al.Structurally improved, TiO2-incorporated, CaO-based pellets for thermochemical energy storage in concentrated solar power plants[J]. Solar energy materials and solar cells, 2021, 226: 111076.
[55] LI Z S, CAI N S, HUANG Y Y, et al.Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & fuels, 2005, 19(4): 1447-1452.
[56] AIHARA M, NAGAI T, MATSUSHITA J, et al.Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J]. Applied energy, 2001, 69(3): 225-238.
[57] CHEN X Y, JIN X G, LIU Z M, et al.Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping[J]. Energy, 2018, 155: 128-138.
[58] KOIRALA R, REDDY G K, LEE J Y, et al.Influence of foreign metal dopants on the durability and performance of Zr/Ca sorbents during high temperature CO2 capture[J]. Separation science and technology, 2014, 49(1): 47-54.
[59] GUO H X, FENG J Q, ZHAO Y J, et al.Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO2 adsorption[J]. Journal of CO2 utilization, 2017, 19: 165-176.
[60] BENITEZ-GUERRERO M, VALVERDE J M, PEREJON A, et al.Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power[J]. Applied energy, 2018, 210: 108-116.
[61] LIU W Q, FENG B, WU Y Q, et al.Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environmental science & technology, 2010, 44(8): 3093-3097.
[62] HAN R, GAO J H, WEI S Y, et al.Development of dense Ca-based, Al-stabilized composites with high volumetric energy density for thermochemical energy storage of concentrated solar power[J]. Energy conversion and management, 2020, 221: 113201.
[63] WU S F, ZHU Y Q.Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent[J]. Industrial & engineering chemistry research, 2010, 49(6): 2701-2706.
[64] FLORIN N, FENNELL P.Synthetic CaO-based sorbent for CO2 capture[J]. Energy procedia, 2011, 4: 830-838.
[65] HU Y C, LIU W Q, SUN J, et al.Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture[J]. Chemical engineering journal, 2015, 273: 333-343.
[66] WANG K, GU F, CLOUGH P T, et al.Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants[J]. Chemical engineering journal, 2020, 390: 124163.
[67] LIU J R, XUAN Y M, TENG L, et al.Direct solar-driven calcination kinetics for Ca-looping thermochemical energy storage[J]. Chemical engineering science, 2024, 285: 119549.
[68] GUO S J, TIAN X K, XU Y X, et al.Ca/Co-based composites with improved cyclic stability and optical absorption for advanced thermochemical energy storage systems[J]. Chemical engineering journal, 2023, 468: 143691.
[69] DA Y, ZHOU J L.Decorating calcium-based materials with transition metal elements for directly capturing and storing solar energy[J]. ACS omega, 2022, 7(50): 47202-47213.
[70] FENG P H, LIU Y, AYUB I, et al.Techno-economic analysis of screening metal hydride pairs for a 910 MWhth thermal energy storage system[J]. Applied energy, 2019, 242: 148-156.
[71] TENG L, XUAN Y M, DA Y, et al.Modified Ca-looping materials for directly capturing solar energy and high-temperature storage[J]. Energy storage materials, 2020, 25: 836-845.
[72] ZHENG H B, SONG C, BAO C, et al.Dark calcium carbonate particles for simultaneous full-spectrum solar thermal conversion and large-capacity thermochemical energy storage[J]. Solar energy materials and solar cells, 2020, 207: 110364.
[73] SUN J, BAI S B, LI K K, et al.Evaluation of thermochemical energy storage performance of Fe-/ Mn-doped, Zr-stabilized, CaO-based composites under different thermal energy storage modes[J]. ACS applied energy materials, 2022, 5(4): 4903-4915.
[74] SONG C, LIU X L, ZHENG H B, et al.Decomposition kinetics of Al- and Fe-doped calcium carbonate particles with improved solar absorbance and cycle stability[J]. Chemical engineering journal, 2021, 406: 126282.
[75] OBERMEIER J, SAKELLARIOU K G, TSONGIDIS N I, et al.Material development and assessment of an energy storage concept based on the CaO-looping process[J]. Solar energy, 2017, 150: 298-309.
[76] DA Y, ZHOU J L.Multi-doping strategy modified calcium-based materials for improving the performance of direct solar-driven calcium looping thermochemical energy storage[J]. Solar energy materials and solar cells, 2022, 238: 111613.
[77] MANOVIC V, ANTHONY E J.CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture[J]. Environmental science & technology, 2009, 43(18): 7117-7122.
[78] MANOVIC V, WU Y H, HE I, et al.Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles[J]. Environmental science & technology, 2012, 46(22): 12720-12725.
[79] SUN J, LIU W Q, HU Y C, et al.Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture[J]. Chemical engineering journal, 2016, 285: 293-303.
[80] HU Y C, LIU W Q, PENG Y, et al.One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique[J]. Fuel processing technology, 2017, 160: 70-77.
[81] QIN C L, YIN J J, AN H, et al.Performance of extruded particles from calcium hydroxide and cement for CO2 capture[J]. Energy & fuels, 2012, 26(1): 154-161.
[82] LIU F J, CHOU K S, HUANG Y K.A novel method to make regenerable core-shell calcium-based sorbents[J]. Journal of environmental management, 2006, 79(1): 51-56.
[83] LI H L, CHEN Y J, LENG L J, et al.Thermochemical energy storage of concentrated solar power by novel Y2O3-doped CaO pellets[J]. Energy & fuels, 2021, 35(15): 12610-12618.
[84] TONG X L, LIU W Q, YANG Y D, et al.A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J]. Fuel processing technology, 2019, 193: 149-158.
[85] LI H L, QU M Y, YANG Y D, et al.One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture[J]. Chemical engineering journal, 2019, 374: 619-625.
[86] SUN J, LIANG C, WANG W Y, et al.Screening of naturally Al/Si-based mineral binders to modify CaO-based pellets for CO2 capture[J]. Energy & fuels, 2017, 31(12): 14070-14078.
[87] LI B Y, LI Y J, DOU Y H, et al.SiC/Mn co-doped CaO pellets with enhanced optical and thermal properties for calcium looping thermochemical heat storage[J]. Chemical engineering journal, 2021, 423: 130305.
[88] WU Y H, MANOVIC V, HE I, et al.Modified lime-based pellet sorbents for high-temperature CO2 capture: reactivity and attrition behavior[J]. Fuel, 2012, 96: 454-461.
[89] QIN C L, DU H, LIU L, et al.CO2 capture performance and attrition property of CaO-based pellets manufactured from organometallic calcium precursors by extrusion[J]. Energy & fuels, 2014, 28(1): 329-339.

基金

河北省重点研发计划(22373712D)

PDF(2569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/