新型分片式钢管混凝土风电塔的力学性能研究

廖明进, 徐宇, 范可征

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 18-24.

PDF(2246 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2246 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 18-24. DOI: 10.19912/j.0254-0096.tynxb.2024-0492

新型分片式钢管混凝土风电塔的力学性能研究

  • 廖明进, 徐宇, 范可征
作者信息 +

MECHANICAL PERFORMANCE STUDY OF NEW SPLIT CONCRETE-FILLED STEEL TUBULAR WIND TURBINE TOWER

  • Liao Mingjin, Xu Yu, Fan Kezheng
Author information +
文章历史 +

摘要

提出一种新型分片式钢管混凝土风电塔。首先,依据相同位置横截面承载力不小于圆锥型塔筒的原则,拟定分片式风电塔结构基本设计参数,然后基于ABAQUS对比研究分片式风电塔与圆锥型塔筒力学性能的差异。研究结果表明:1)与圆锥型塔筒相比,在相同设计载荷下分片式风电塔最大Mises应力减小19.58%,塔顶位移减小24.93%,基频提升11.7%,线性屈曲载荷提升33.0%,非线性屈曲载荷提升41.5%,用钢量减少4%。2)缺陷幅值系数为0.05时,分片式风电塔失稳载荷约为圆锥型塔筒的两倍。3)分片式风电塔不会突然失稳,失稳载荷受缺陷影响小,结构缺陷不敏感,截面塑性区因受钢管混凝土柱的约束扩展受限,其具有良好的屈曲性能和结构延性特征。

Abstract

A new split concrete-filled steel tubular wind turbine tower was proposed. Firstly, based on the principle that the cross-sectional load capacity at the same position was not less than that of the conical tower, the basic design parameters of the split wind turbine tower structure was proposed. Subsequently, a comparative study of the mechanical performance differences between the split wind turbine tower and the conical tower was conducted based on ABAQUS. The research findings indicate that: 1) Compared to the conical tower, under the same design load, the split wind turbine tower exhibits a decrease of 19.58% in maximum Mises stress, a decrease of 24.93% in tower top displacement, an increase of 11.7% in fundamental frequency, a 33.0% increase in linear buckling load, a 41.5% increase in nonlinear buckling load, and a 4.7% decrease in steel consumption. 2) When the imperfect amplitude coefficient is 0.05, the instability load of the split wind turbine tower is approximately twice that of the conical tower. 3) The split wind turbine tower exhibits a gradual stability decline instead of sudden instability and destruction. This design effectively mitigates the instability issue arising from an increasing ratio of diameter to thickness compared to the conical tower. In contrast to the conical tower, its structural load capacity is less affected by imperfection amplitude, rendering it insensitive to imperfection. Moreover, the plasticity zone of the section is restricted due to the constraint imposed by the concrete-filled steel tubular, resulting in excellent buckling performance and structural ductility characteristic.

关键词

风力机塔筒 / 钢管混凝土 / 静力分析 / 模态分析 / 屈曲 / 缺陷不敏感

Key words

wind turbine tower / concrete-filled steel tubular / static analysis / modal analysis / buckling / imperfection insensitivity

引用本文

导出引用
廖明进, 徐宇, 范可征. 新型分片式钢管混凝土风电塔的力学性能研究[J]. 太阳能学报. 2025, 46(8): 18-24 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0492
Liao Mingjin, Xu Yu, Fan Kezheng. MECHANICAL PERFORMANCE STUDY OF NEW SPLIT CONCRETE-FILLED STEEL TUBULAR WIND TURBINE TOWER[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 18-24 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0492
中图分类号: TU355   

参考文献

[1] 陈严, 田鹏, 刘雄, 等. 水平轴风力机锥形塔筒的静动态特性研究[J]. 太阳能学报, 2010, 31(10): 1359-1365.
CHEN Y, TIAN P, LIU X, et al.Research on static and dynamic characteristics of cone-shaped tower of HAWTs[J]. Acta energiae solaris sinica, 2010, 31(10): 1359-1365.
[2] 柯世堂, 王同光, 陈少林, 等. 大型风力机全机风振响应和等效静力风荷载[J]. 浙江大学学报(工学版), 2014, 48(4): 686-692.
KE S T, WANG T G, CHEN S L, et al.Wind-induced responses and equivalent static wind load of large wind turbine system[J]. Journal of Zhejiang University (engineering science), 2014, 48(4): 686-692.
[3] 王丹, 徐军, 贺广零, 等. 风电机组混凝土-钢混合塔筒技术现状与发展趋势[J/OL]. 土木与环境工程学报(中英文), 1-18[2025-03-11]. http://kns.cnki.net/kcms/detail/50.1218.TU.20230920.1025.002.html.
WANG D, XU J, HE G L, et al. Technology status and development trends of concrete-steel hybrid towers for wind turbines[J/OL]. Journal of civil and environmental engineering, 1-18[2025-03-11]. http://kns.cnki.net/kcms/detail/50.1218.TU.20230920.1025.002.html.
[4] 陈俊岭, 阳荣昌, 马人乐. 大型风电机组组合式塔架结构优化设计[J]. 湖南大学学报(自然科学版), 2015, 42(5): 29-35.
CHEN J L, YANG R C, MA R L.Structural design optimization of a composite tower for large wind turbine systems[J]. Journal of Hunan University (natural sciences), 2015, 42(5): 29-35.
[5] YADAV K K, GERASIMIDIS S.Imperfection insensitive thin cylindrical shells for next generation wind turbine towers[J]. Journal of constructional steel research, 2020, 172: 106228.
[6] 王文达, 张丽丽, 纪孙航, 等. 中空夹层钢管混凝土风力机塔架风振性能研究[J]. 建筑科学与工程学报, 2023, 40(2): 26-39.
WANG W D, ZHANG L L, JI S H, et al.Study on wind vibration performance of concrete-filled double skin steel tubular wind turbine tower[J]. Journal of architecture and civil engineering, 2023, 40(2): 26-39.
[7] 张曼生, 张国军, 黄威振, 等. 预应力装配式高耸风电塔架受力性能研究[J]. 建筑结构学报, 2022, 43(5): 62-78.
ZHANG M S, ZHANG G J, HUANG W Z, et al.Study on mechanical performance of pre-stressed assembled towering wind tower[J]. Journal of building structures, 2022, 43(5): 62-78.
[8] 师振贵, 王云超, 黄赐荣, 等. 干式连接装配式风电混塔非线性特征研究[J]. 太阳能学报, 2024, 45(6): 564-571.
SHI Z G, WANG Y C, HUANG C R, et al.Research on nonlinear characteristics of dry-connected prefabricated wind turbine hybrid tower[J]. Acta energiae solaris sinica, 2024, 45(6): 564-571.
[9] 陈俊岭, 高洁, 赵邦州, 等. 风电机组钢塔架与钢-混凝土组合塔架动力响应对比分析[J]. 太阳能学报, 2023, 44(3): 225-231.
CHEN J L, GAO J, ZHAO B Z, et al.Comprehensive analysis of dynamic response of steel and steel-concrete combined wind turbine towers[J]. Acta energiae solaris sinica, 2023, 44(3): 225-231.
[10] 张向荣. 钢管混凝土结构在高层建筑中的应用现状及发展[J]. 中外建筑, 2007(7): 67-68.
ZHANG X R.The current application situations and development of steel tube concrete structure in high-rise building[J]. Chinese and overseas architecture, 2007(7): 67-68.
[11] 潘方树, 王法武, 柯世堂, 等. 考虑缺陷的大型风力机塔筒屈曲分析与稳定性设计[J]. 太阳能学报, 2017, 38(10): 2659-2664.
PAN F S, WANG F W, KE S T, et al.Buckling analysis and stability design of wind turbine tower with geometic imperfections[J]. Acta energiae solaris sinica, 2017, 38(10): 2659-2664.
[12] European Commission. Eurocode 3: design of steel structures-part 1-1: general rules and rules for buildings: EN1993-1-1[S].
[13] European Commission. Eurocode 4: design of composite steel and concrete structure-part 1-1: general rules and rules for buildings: EN1994-1-1[S].
[14] 刘威. 钢管混凝土局部受压时的工作机理研究[D]. 福州: 福州大学, 2005: 62-64.
LIU W.Research on mechanism of concrete-filled steel tubes under local compression[D]. Fuzhou: Fuzhou University, 2005: 62-64.
[15] AL-SANAD S, WANG L, PAROL J, et al.Reliability-based design optimisation framework for wind turbine towers[J]. Renewable energy, 2021, 167: 942-953.
[16] 兰杰, 林淑, 付斌, 等. 风力发电机组塔架减振控制策略设计[J]. 分布式能源, 2021, 6(3): 55-62.
LAN J, LIN S, FU B, et al.Wind turbine tower vibration reduction control strategy design[J]. Distributed energy, 2021, 6(3): 55-62.
[17] 陈志平, 焦鹏, 马赫, 等. 基于初始缺陷敏感性的轴压薄壁圆柱壳屈曲分析研究进展[J]. 机械工程学报, 2021, 57(22): 114-129.
CHEN Z P, JIAO P, MA H, et al.Advances in buckling analysis of axial compression loaded thin-walled cylindrical shells based on initial imperfection sensitivity[J]. Journal of mechanical engineering, 2021, 57(22): 114-129.
[18] COUTO C, VILA REAL P.Numerical investigation on the influence of imperfections in the local buckling of thin-walled I-shaped sections[J]. Thin-walled structures, 2019, 135: 89-108.
[19] KIM H I, SIM C H, PARK J S, et al.Numerical derivation of buckling knockdown factors for isogrid-stiffened cylinders with various shell thickness ratios[J]. International journal of aerospace engineering, 2020, 2020(1): 9851984.

基金

国家自然科学基金(51778508)

PDF(2246 KB)

Accesses

Citation

Detail

段落导航
相关文章

/