融合热斑时序演变特征的光伏阵列故障检测方法

韩明轩, 董红召, 佘翊妮, 陈炜烽

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 269-277.

PDF(3173 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3173 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 269-277. DOI: 10.19912/j.0254-0096.tynxb.2024-0494

融合热斑时序演变特征的光伏阵列故障检测方法

  • 韩明轩1, 董红召1, 佘翊妮1, 陈炜烽2
作者信息 +

PHOTOVOLTAIC ARRAY FAULT DETECTION METHOD BASED ON TIME SERIES EVOLUTION CHARACTERISTICS OF HOT SPOTS

  • Han Mingxuan1, Dong Hongzhao1, She Yini1, Chen Weifeng2
Author information +
文章历史 +

摘要

针对传统依靠I-V特性的光伏故障离线诊断方法建模复杂、成本高,而在线人工智能检测方法可解释性差、对数据集敏感等问题,提出一种新的融合热斑时序演变特征的光伏阵列故障检测方法(HSTF),利用真实光伏平台进行遮挡实验,以获取不同热斑故障程度下的组件I-V输出特性曲线,并建立等效电路模型以模拟不同热斑程度下光伏阵列输出特征,共同构建故障诊断方法的输入特征向量。之后构建LightGBM-DBO模型对获取数据集进行训练,建立融合热斑时序演变特征的光伏阵列故障检测模型。利用光伏平台遮挡实验验证模型性能效果,将该方法与传统神经网络算法、决策树算法等其他检测算法进行对比,验证方法的准确性与可靠性。

Abstract

Traditional offline photovoltaic fault diagnosis methods that rely on I-V characteristics suffer from problems such as complex modeling and high costs, while online artificial intelligence detection methods are plagued by poor interpretability and sensitivity to datasets. Aiming at these problems and shortcomings, a new photovoltaic array fault detection method (heat spot timing feature, HSTF) based on the time series evolution characteristics of hot spots is proposed. The real photovoltaic platform is used to carry out the occlusion experiment to obtain the I-V output characteristic curve of the component under different hot spot fault degrees. The equivalent circuit model is established to simulate the output characteristics of the photovoltaic array under different hot spot degrees, and the input feature vector of the fault diagnosis method is constructed together. Then, the LightGBM-DBO model is constructed to train the obtained data set, and a photovoltaic array fault detection model integrating the temporal evolution characteristics of hot spots is established. The photovoltaic platform occlusion experiment is used to verify the performance of the model. The method is compared with other detection algorithms such as traditional neural network algorithm and decision tree algorithm to verify the accuracy and reliability of the method.

关键词

太阳电池 / 故障检测 / 电流电压特性 / 特征提取 / 热斑

Key words

solar cells / fault detection / current voltage characteristics / feature extraction / hot spot

引用本文

导出引用
韩明轩, 董红召, 佘翊妮, 陈炜烽. 融合热斑时序演变特征的光伏阵列故障检测方法[J]. 太阳能学报. 2025, 46(8): 269-277 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0494
Han Mingxuan, Dong Hongzhao, She Yini, Chen Weifeng. PHOTOVOLTAIC ARRAY FAULT DETECTION METHOD BASED ON TIME SERIES EVOLUTION CHARACTERISTICS OF HOT SPOTS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 269-277 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0494
中图分类号: TM615   

参考文献

[1] 李振坤, 张天翼, 田飞, 等. 基于时间卷积网络和误差函数的光伏电站有功功率优化分配[J]. 电力系统自动化, 2023, 47(6): 142-149.
LI Z K, ZHANG T Y, TIAN F, et al.Optimal allocation of active power for photovoltaic power station based on temporal convolutional network and error function[J]. Automation of electric power systems, 2023, 47(6): 142-149.
[2] 王强强, 姚良忠, 盛万兴, 等. 基于机会约束规划的配电网分布式光伏承载力提升方法[J]. 电力系统自动化, 2023, 47(18): 132-141.
WANG Q Q, YAO L Z, SHENG W X, et al.Enhancement method for distributed photovoltaic hosting capacity of distribution network based on chance-constrained programming[J]. Automation of electric power systems, 2023, 47(18): 132-141.
[3] 林帆, 张耀, 东琦, 等. 基于分位数插值和深度自回归网络的光伏出力概率预测[J]. 电力系统自动化, 2023, 47(9): 79-87.
LIN F, ZHANG Y, DONG Q, et al.Probability prediction of photovoltaic output based on quantile interpolation and deep autoregressive network[J]. Automation of electric power systems, 2023, 47(9): 79-87.
[4] 潘文峰, 陆晨, 王加鸿, 等. 晶体硅光伏组件的热斑效应详解[J]. 太阳能, 2019(1): 48-52.
PAN W F, LU C, WANG J H, et al.Analyze on hot spot effect of crystalline silicon PV modules[J]. Solar energy, 2019(1): 48-52.
[5] 宁静, 许盛之, 龚友康, 等. 电站中光伏组件的人工智能热红外检测技术进展[J]. 半导体光电, 2023, 44(2): 161-167.
NING J, XU S Z, GONG Y K, et al.Progress in artificial intelligence thermal infrared detection technology for photovoltaic modules in power plant[J]. Semiconductor optoelectronics, 2023, 44(2): 161-167.
[6] 王元章, 李智华, 吴春华. 光伏系统故障诊断方法综述[J]. 电源技术, 2013, 37(9): 1700-1705.
WANG Y Z, LI Z H, WU C H.Fault diagnosis technologies for photovoltaic system[J]. Chinese journal of power sources, 2013, 37(9): 1700-1705.
[7] CHENG C, LIU M, YI H, et al.Tendency-aided data-driven method for hot spot detection in photovoltaic systems[J]. IEEE journal of emerging and selected topics in industrial electronics, 2022, 3(4): 901-910.
[8] HUANG Y C, HUANG C M, CHEN S J, et al.Optimization of module parameters for PV power estimation using a hybrid algorithm[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2210-2219.
[9] 魏缪宇, 卫东, 郭倩, 等. 局部异物遮挡状态下光伏单元输出特性与故障诊断方法[J]. 太阳能学报, 2021, 42(5): 260-266.
WEI M Y, WEI D, GUO Q, et al.Output characteristics and fault diagnosis method of PV unit under partial shading[J]. Acta energiae solaris sinica, 2021, 42(5): 260-266.
[10] 方洛迪, 郭倩, 卫东, 等. 遮挡状态下光伏组件多峰输出特性的参数计算与分析[J]. 太阳能学报, 2022, 43(7): 115-121.
FANG L D, GUO Q, WEI D, et al.Parameters calculation and analysis of muti-peak output characteristics of PV module under shading[J]. Acta energiae solaris sinica, 2022, 43(7): 115-121.
[11] ČABO F G, MARINIĆ-KRAGIĆ I, GARMA T, et al.Development of thermo-electrical model of photovoltaic panel under hot-spot conditions with experimental validation[J]. Energy, 2021, 230: 120785.
[12] 马铭遥, 张志祥, 刘恒, 等. 基于I-V特性分析的晶硅光伏组件故障诊断[J]. 太阳能学报, 2021, 42(6): 130-137.
MA M Y, ZHANG Z X, LIU H, et al.Fault diagnosis of crystalline silicon photovoltaic module based on I-V characteristic analysis[J]. Acta energiae solaris sinica, 2021, 42(6): 130-137.
[13] 刘恒, 马铭遥, 张志祥, 等. 热斑晶硅光伏组件I-V曲线分析及特征模拟研究[J]. 太阳能学报, 2021, 42(4): 239-246.
LIU H, MA M Y, ZHANG Z X, et al.Study on I-V curve analysis and characteristic simulation of silicon photovoltaic module with hot spot[J]. Acta energiae solaris sinica, 2021, 42(4): 239-246.
[14] 高剑, 郭倩, 卫东. 基于光伏组件I-V输出特性的典型故障分析与诊断[J]. 中国测试, 2024, 50(12): 163-168.
GAO J, GUO Q, WEI D.Typical fault analysis and diagnosis based on I-V output characteristics of photovoltaic modules[J]. China measurement & test, 2024, 50(12): 163-168.
[15] CHEN H T, YI H, JIANG B, et al.Data-driven detection of hot spots in photovoltaic energy systems[J]. IEEE transactions on systems, man, and cybernetics: systems, 2019, 49(8): 1731-1738.
[16] 顾崇寅, 徐潇源, 王梦圆, 等. 基于CatBoost算法的光伏阵列故障诊断方法[J]. 电力系统自动化, 2023, 47(2): 105-114.
GU C Y, XU X Y, WANG M Y, et al.CatBoost algorithm based fault diagnosis method for photovoltaic arrays[J]. Automation of electric power systems, 2023, 47(2): 105-114.
[17] 王小宇, 刘波, 孙凯, 等. 光伏阵列故障诊断技术综述[J]. 电工技术学报, 2024, 39(20): 6526-6543.
WANG X Y, LIU B, SUN K, et al.A Review of photovoltaic array fault diagnosis technology[J].Transactions of China Electrotechnical Society, 2024, 39(20): 6526-6543.
[18] 李春鹏, 韩萌, 孟凡兴, 等. 复杂数据流在线集成分类算法综述[J]. 计算机应用研究, 2024, 41(3): 641-651.
LI C P, HAN M, MENG F X, et al.Overview of online ensemble classification algorithms for complex data streams[J]. Application research of computers, 2024, 41(3): 641-651.
[19] KE G L, MENG Q, FINLEY T, et al.LightGBM[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA, 2017: 3149-3157.
[20] XUE J K, SHEN B.Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The journal of supercomputing, 2023, 79(7): 7305-7336.

基金

杭州市重大科技创新项目(2022AIZD0163)

PDF(3173 KB)

Accesses

Citation

Detail

段落导航
相关文章

/