长三角区域光伏发电功率预测模型适用性评估——以浙江省金华市为例

徐崇斌, 陈前, 孙晓敏, 张晓波, 李国帅, 左欣

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 293-298.

PDF(1792 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1792 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 293-298. DOI: 10.19912/j.0254-0096.tynxb.2024-0501

长三角区域光伏发电功率预测模型适用性评估——以浙江省金华市为例

  • 徐崇斌1,2, 陈前1,2, 孙晓敏1,2, 张晓波3, 李国帅2, 左欣1,2
作者信息 +

APPLICABILITY EVALUATION OF PHOTOVOLTAIC POWER GENERATION PREDICTION MODEL IN YANGTZE RIVER DELTA REGION: A CASE STUDY OF JINHUA CITY, ZHEJIANG PROVINCE

  • Xu Chongbin1,2, Chen Qian1,2, Sun Xiaomin1,2, Zhang Xiaobo3, Li Guoshuai2, Zuo Xin1,2
Author information +
文章历史 +

摘要

光伏发电过程受气象因素、地理位置等外部环境因素的影响较大,具有显著的不确定性。该文利用金华市6个光伏电站的发电功率数据,使用不同预测模型进行对比分析,证明邻近发电站对于光伏发电功率预测的支持性作用。研究表明:处于同一区域之间的光伏电站受到气象环境因素影响,具有相似的趋势; 2)基于深度学习进行时间序列预测无需手动提取特征和熟悉整个发电过程,通过数据驱动和模型训练,能够捕捉到功率曲线的变化趋势,基于Transformer的Crossformer和PatchTST更适合应用到光伏发电功率预测任务中。

Abstract

The photovoltaic power generation process is significantly affected by external environmental factors such as meteorological conditions and geographic location, leading to pronounced uncertainty. This article leverages the power generation data from six photovoltaic power stations in Jinhua City and employs various prediction models for comparative analysis, to analyze and demonstrate the supportive role neighby power stations in the predicton of photovoltaic power generation. The study indicates that: 1) Photovoltaic power stations located within the same region are affected by meteorological environmental factors and exhibit similar trends. 2) Time series forecasting based on deep learning obviates the need for manual feature extraction or an intricate understanding of the entire power generation process. Instead, employing a data-driven approach and model training can capture the changing trends of the power curves. Transformer-based models like Crossformer and PatchTST are more aptly suited for the task of predicting photovoltaic power output.

关键词

光伏发电功率预测 / 深度学习 / LSTM / Transformer

Key words

photovoltaic power generation prediction / deep learning / LSTM / Transformer

引用本文

导出引用
徐崇斌, 陈前, 孙晓敏, 张晓波, 李国帅, 左欣. 长三角区域光伏发电功率预测模型适用性评估——以浙江省金华市为例[J]. 太阳能学报. 2025, 46(8): 293-298 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0501
Xu Chongbin, Chen Qian, Sun Xiaomin, Zhang Xiaobo, Li Guoshuai, Zuo Xin. APPLICABILITY EVALUATION OF PHOTOVOLTAIC POWER GENERATION PREDICTION MODEL IN YANGTZE RIVER DELTA REGION: A CASE STUDY OF JINHUA CITY, ZHEJIANG PROVINCE[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 293-298 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0501
中图分类号: TM615   

参考文献

[1] 程耀华, 张宁, 康重庆, 等. 低碳多能源系统的研究框架及展望[J]. 中国电机工程学报, 2017, 37(14): 4060-4069, 4285.
CHENG Y H, ZHANG N, KANG C Q, et al.Research framework and prospects of low-carbon multiple energy systems[J]. Proceedings of the CSEE, 2017, 37(14): 4060-4069, 4285.
[2] ZAZOUM B.Solar photovoltaic power prediction using different machine learning methods[J]. Energy reports, 2022, 8: 19-25.
[3] 薛阳, 李金星, 杨江天, 等. 基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测[J]. 南方电网技术, 2024, 18(11): 97-105.
XUE Y, LI J X, YANG J T, et al.Short-term prediction of photovoltaic power based on similar day analysis and improved whale algorithm to optimize LSTM network model[J]. Southern power system technology, 2024, 18(11): 97-105.
[4] 战文华, 车建峰, 王勃, 等. 基于网格化数值天气预报的区域光伏发电多输出功率预测方法[J]. 中国电力, 2024, 57(3):144-151.
ZHAN W H, CHE J F, WANG B, et al.Application of message compliance detection and intrusion blocking technology in remote operation and maintenance system of relay protection[J]. Electric power, 2024, 57(3): 144-151.
[5] 吕清泉, 张珍珍, 马彦宏, 等. 区域光伏发电出力特性分析研究[J]. 发电技术, 2022, 43(3): 413-420.
LYU Q Q, ZHANG Z Z, MA Y H, et al.Analysis and research on output characteristics of regional photovoltaic power generation[J]. Power generation technology, 2022, 43(3): 413-420.
[6] MAYER M J, GRÓF G. Extensive comparison of physical models for photovoltaic power forecasting[J]. Applied energy, 2021, 283: 116239.
[7] AHMED R, SREERAM V, MISHRA Y, et al.A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and sustainable energy reviews, 2020, 124: 109792.
[8] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[9] 耿华阳, 王玮. 基于数据残余分量与ARMA模型的光伏功率日前预测方法[J]. 工业仪表与自动化装置, 2019(1): 3-7.
GENG H Y, WANG W.Photovoltaic power day-ahead prediction method based on data residual component and ARMA model[J]. Industrial instrumentation & automation, 2019(1): 3-7.
[10] 赵滨滨, 王莹, 王彬, 等. 基于ARIMA时间序列的分布式光伏系统输出功率预测方法研究[J]. 可再生能源, 2019, 37(6): 820-823.
ZHAO B B, WANG Y, WANG B, et al.Photovoltaic power prediction in distribution network based on ARIMA model time series[J]. Renewable energy resources, 2019, 37(6): 820-823.
[11] 李文, 邓升, 段妍, 等. 时间序列预测与深度学习: 文献综述与应用实例[J]. 计算机应用与软件, 2020, 37(10): 64-70, 84.
LI W, DENG S, DUAN Y, et al.Time series forecasting and deep learning: literature review and empirical example[J]. Computer applications and software, 2020, 37(10): 64-70, 84.
[12] ALCAÑIZ A, GRZEBYK D, ZIAR H, et al. Trends and gaps in photovoltaic power forecasting with machine learning[J]. Energy reports, 2023, 9: 447-471.
[13] 陈元峰, 马溪原, 程凯, 等. 基于气象特征量选取与SVM模型参数优化的新能源超短期功率预测[J]. 太阳能学报, 2023, 44(12): 568-576.
CHEN Y F, MA X Y, CHENG K, et al.Ultra-short-term power forecast of new energy based on meteorological feature selection and SVM model parameter optimization[J]. Acta energiae solaris sinica, 2023, 44(12): 568-576.
[14] 张一平, 宋红, 罗敏, 等. 人工神经网络算法在光伏发电短期功率预测中的应用[J]. 太阳能, 2019(4): 47-53.
ZHANG Y P, SONG H, LUO M, et al.Application of artificial neural network algorithm in short-term power prediction of PV power generation[J]. Solar energy, 2019(4): 47-53.
[15] 张蕊, 李安燚, 刘世岩, 等. 基于波动特征提取下云层分型的短期光伏发电功率预测方法[J]. 太阳能学报, 2024, 45(11): 330-342.
ZHANG R, LI A Y, LIU S Y, et al.A short-term photovoltaic power generation power prediction method based on cloud classification using wave feature extraction[J]. Acta energiae solaris sinica, 2024, 45(11): 330-342.
[16] 张旭. 基于循环神经网络的时间序列预测方法研究[D]. 南京: 南京大学, 2019.
ZHANG X.Time series forecasting based on recurrent neural networks[D]. Nanjing: Nanjing University, 2019.
[17] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[18] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[19] LI S Y, JIN X Y, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[EB/OL].2019: 1907.00235. https://arxiv.org/abs/1907.00235v3.
[20] KITAEV N, KAISER, LEVSKAYA A.Reformer: the efficient transformer[J]. arXiv e-prints, 2020: arXiv: 2001.04451.
[21] ZHOU H Y, ZHANG S H, PENG J Q, et al.Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(12): 11106-11115.
[22] WU H X, XU J H, WANG J M, et al.Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[J]. Advances in neural information processing systems, 2021, 34: 22419-22430.
[23] ZENG A L, CHEN M X, ZHANG L, et al.Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI conference on artificial intelligence, 2023, 37(9): 11121-11128.
[24] NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with transformers[J]. arXiv preprint arXiv:2211.14730, 2022.
[25] ZHANG Y H, YAN J.Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//The Eleventh International Conference on Learning Representations. Kigali, Rwanda. 2023.

基金

国网浙江新兴科技有限公司自控科技项目(XX92000Y02)

PDF(1792 KB)

Accesses

Citation

Detail

段落导航
相关文章

/