地埋管跨季节储热技术研究与展望

冯国会, 田晓珂, 王茜如, 黄凯良, 刘馨

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 207-215.

PDF(1881 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1881 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 207-215. DOI: 10.19912/j.0254-0096.tynxb.2024-0506

地埋管跨季节储热技术研究与展望

  • 冯国会, 田晓珂, 王茜如, 黄凯良, 刘馨
作者信息 +

REVIEW AND PROSPECT OF BOREHOLE THERMAL ENERGY STORAGE

  • Feng Guohui, Tian Xiaoke, Wang Xiru, Huang Kailiang, Liu Xin
Author information +
文章历史 +

摘要

针对地埋管跨季节储热技术可解决余热资源用于供暖时存在的时间、空间不匹配问题,归纳总结了影响地埋管储热效果的因素;综述了地埋管储热技术的长周期模拟研究,分析其环境效益、系统效能和运行策略等;归纳了地埋管储热技术的两类应用形式,分别阐述了其系统构成、运行特点和各工程存在的问题,并就各问题总结经验;最后总结了目前地埋管储热技术易出现的问题,就设计计算、联合运行和自动控制对未来地埋管跨季节储热技术的发展提出展望。

Abstract

In view of the fact that the cross-seasonal borehole thermal energy storage(BTES) technology can solve the problem of time and space mismatch when waste heat resources are used for heating, the factors affecting the heat storage effect of BTES are summarized. This paper reviews the long-term simulation research of BTES technology, and analyzes its environmental benefits, system efficiency and operation strategies, etc. Two application forms of BTES technology are summarized. Their system composition, operational characteristics and problems existing in each project are respectively expounded, and experiences are summarized for each problem. Finally, the current common problems in BTES are summarized. Prospects for the future development of cross-seasonal heat storage technology in BTES are proposed in terms of design calculation, joint operation and automatic control.

关键词

地埋管跨季节储热 / 地埋管换热器 / 影响因素 / 长周期模拟 / 研究进展

Key words

borehole cross-seasonal thermal storage / buried pipe heat exchanger / influencing factor / long-period simulation / research progress

引用本文

导出引用
冯国会, 田晓珂, 王茜如, 黄凯良, 刘馨. 地埋管跨季节储热技术研究与展望[J]. 太阳能学报. 2025, 46(8): 207-215 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0506
Feng Guohui, Tian Xiaoke, Wang Xiru, Huang Kailiang, Liu Xin. REVIEW AND PROSPECT OF BOREHOLE THERMAL ENERGY STORAGE[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 207-215 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0506
中图分类号: TU83   

参考文献

[1] ZHANG L P, XIA J J, THORSEN J E, et al.Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow[J]. Building simulation, 2017, 10(1): 51-63.
[2] 方豪. 低品位工业余热应用于城镇集中供暖关键问题研究[D]. 北京: 清华大学, 2015.
FANG H.Research on the key issues of low-grade industrial waste heat utilization for district heating[D]. Beijing: Tsinghua University, 2015.
[3] XU X, YOU S J, ZHENG X J, et al.A survey of district heating systems in the heating regions of northern China[J]. Energy, 2014, 77: 909-925.
[4] ZHANG Y C, XIA J J, FANG H, et al.Field tests on the operational energy consumption of Chinese district heating systems and evaluation of typical associated problems[J]. Energy and buildings, 2020, 224: 110269.
[5] 张俊月, 郭放, 黄海龙, 等. 工业余热跨季节储热系统优化及经济性分析[J]. 太阳能学报, 2020, 41(1): 47-53.
ZHANG J Y, GUO F, HUANG H L, et al.Optimization and economic analysis of an industrial waste heat heating system with seasonal storage[J]. Acta energiae solaris sinica, 2020, 41(1): 47-53.
[6] 中国建筑节能年度发展研究报告2023(城市能源系统专题)[M]中国建筑节能年度发展研究报告2023(城市能源系统专题)[M]. 北京: 中国建筑工业出版社, 2023: 176-201.
China building energy efficiency annual development research report 2023(urban energy systems theme)[M]. Beijing: China Architecture & Building Press, 2023: 176-201.
[7] GUO F, YANG X D, XU L Y, et al.A central solar-industrial waste heat heating system with large scale borehole thermal storage[J]. Procedia engineering, 2017, 205: 1584-1591.
[8] 王凯. 工业余热跨季储热集中供热系统研究[D]. 石家庄: 河北科技大学, 2022.
WANG K.Research on central heating system of the industrial waste heat cross-season heat storage[D]. Shijiazhuang: Hebei University of Science and Technology, 2022.
[9] WELSCH B, GÖLLNER-VÖLKER L, SCHULTE D O, et al. Environmental and economic assessment of borehole thermal energy storage in district heating systems[J]. Applied energy, 2018, 216: 73-90.
[10] GIORDANO N, COMINA C, MANDRONE G, et al.Borehole thermal energy storage (BTES). First results from the injection phase of a living lab in Torino (NW Italy)[J]. Renewable energy, 2016, 86: 993-1008.
[11] TOMIGASHI A, FUJINAWA K.Enhanced aquifer thermal energy storage for cooling and heating of Shinshu University building using a nested well system[C]//Sustainable Development and Planning 2024. Seville, Spain, 2024: 871-882.
[12] NOVO A V, BAYON J R, CASTRO-FRESNO D, et al.Review of seasonal heat storage in large basins: water tanks and gravel-water pits[J]. Applied energy, 2010, 87(2): 390-397.
[13] 陈尚沅, 李媛媛, 邸莎, 等. 影响垂直U型地埋管换热量的多因素回归分析[J]. 工程热物理学报, 2024, 45(2): 351-358.
CHEN S Y, LI Y Y, DI S, et al.Multi-factor regression analysis on factors affecting the heat transfer of vertical U-type ground heat exchanger[J]. Journal of engineering thermophysics, 2024, 45(2): 351-358.
[14] 曲伸, 齐子姝, 郭磊. 地源热泵地埋管换热量影响因素研究[J]. 吉林建筑大学学报, 2020, 37(5): 49-55.
QU S, QI Z S, GUO L`. Study on the influencing factors of heat exchange amount of buried pipe of ground source heat pump[J]. Journal of Jilin Jianzhu University, 2020, 37(5): 49-55.
[15] 陈金华. 竖直双U地埋管换热器分层换热模型研究[D]. 重庆: 重庆大学, 2015.
CHEN J H.A study on layered heat transfer model of vertical double U-tube ground heat exchangers[D]. Chongqing: Chongqing University, 2015.
[16] ZHU L, CHEN S, YANG Y, et al.Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase[J]. Renewable energy, 2019, 143: 183-198.
[17] 闵杰. 土壤源热泵地埋管换热器性能影响因素研究[D]. 合肥: 安徽建筑大学, 2021.
MIN J.Research on influencing factors of performance of underground heat exchanger of ground source heat pump[D]. Hefei: Anhui Jianzhu University, 2021.
[18] 邓军涛, 王娟娟, 郑建国. 不同管径和埋深地埋管换热器换热性能分析[J]. 太阳能学报, 2021, 42(9): 416-421.
DENG J T, WANG J J, ZHENG J G.Analysis on thermal performance of ground heat exchanger with various diameters and depths[J]. Acta energiae solaris sinica, 2021, 42(9): 416-421.
[19] ZHOU A Z, HUANG X W, WANG W, et al.Thermo-hydraulic performance of U-tube borehole heat exchanger with different cross-sections[J]. Sustainability, 2021, 13(6): 32-55.
[20] 刘艳峰, 靳璐, 周勇, 等. 分区串并联地埋管群换热效果影响因素分析[J]. 太阳能学报, 2021, 42(11): 421-428.
LIU Y F, JIN L, ZHOU Y, et al.Analysis of influencing factors on heat transfer effect of subarea series-parallel underground pipe groups[J]. Acta energiae solaris sinica, 2021, 42(11): 421-428.
[21] 刘艳峰, 宋梦瑶, 周勇, 等. 分区串并联式太阳能-地源热泵跨季节蓄热组合系统性能研究[J]. 太阳能学报, 2021, 42(12): 71-79.
LIU Y F, SONG M Y, ZHOU Y, et al.Research on performance of subarea series-parallel solar assisted ground source heat pump system[J]. Acta energiae solaris sinica, 2021, 42(12): 71-79.
[22] ZHANG C X, CHEN P, LIU Y F, et al.An improved evaluation method for thermal performance of borehole heat exchanger[J]. Renewable energy, 2015, 77: 142-151.
[23] 温作铭. 地源热泵系统地埋管换热性能提升研究[D]. 石家庄: 河北科技大学, 2021.
WEN Z M.Research on improving the heat exchange performance of underground pipes of ground source heat pump system[D]. Shijiazhuang: Hebei University of Science and Technology, 2021.
[24] GUO F, ZHU X Y, ZHANG J Y, et al.Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating[J]. Applied energy, 2020, 264: 114763.
[25] 王春林, 郭放, 朱永利, 等. 大规模太阳能跨季节土壤储热系统设计优化[J]. 太阳能学报, 2021, 42(4): 320-327.
WANG C L, GUO F, ZHU Y L, et al.Design and optimization of large-scale seasonal borehole thermal energy storage system for solar energy[J]. Acta energiae solaris sinica, 2021, 42(4): 320-327.
[26] 刘仙萍, 雷豫豪, 田东, 等. 夏热冬冷地区太阳能光伏/光热-地源热泵联合供热系统运行性能模拟[J]. 中南大学学报(自然科学版), 2021, 52(6): 1892-1900.
LIU X P, LEI Y H, TIAN D, et al.Numerical simulation for performance of solar photovoltaic/thermal-ground source heat pump hybrid heating system in hot summer and cold winter zone[J]. Journal of Central South University (science and technology), 2021, 52(6): 1892-1900.
[27] 张东海. 分层和渗流条件下竖直地埋管换热器传热特性研究[D]. 徐州: 中国矿业大学, 2020.
ZHANG D H.Investigation on heat transfer behavior of vertical ground heat exchangers in a layered subsurface in the presence of groundwater advection[D]. Xuzhou: China University of Mining and Technology, 2020.
[28] YANG W B, ZHANG Y, WANG F, et al.Experimental and numerical investigations on operation characteristics of seasonal borehole underground thermal energy storage[J]. Renewable energy, 2023, 217: 119365.
[29] OK J, LIM H S, KARNG S W, et al.Long-term borehole energy storage by the inlet position control for low temperature heat source application[J]. Energy and buildings, 2023, 294: 113242.
[30] GUO F, YANG X D.Long-term performance simulation and sensitivity analysis of a large-scale seasonal borehole thermal energy storage system for industrial waste heat and solar energy[J]. Energy and buildings, 2021, 236: 110768.
[31] GUO F, ZHU X Y, LI P C, et al.Low-grade industrial waste heat utilization in urban district heating: simulation-based performance assessment of a seasonal thermal energy storage system[J]. Energy, 2022, 239: 122345.
[32] SLIWA T, ROSEN M A.Efficiency analysis of borehole heat exchangers as grout varies via thermal response test simulations[J]. Geothermics, 2017, 69: 132-138.
[33] 顼永亮. 地埋管回填材料及孔径对传热性能影响分析[D]. 上海: 东华大学, 2016.
XU Y L.Research on the heat transfer characteristics of the grout materials and diameter of ground heat exchanger[D]. Shanghai: Donghua University, 2016.
[34] AMANZHOLOV T, SEITOV A, ALIULY A, et al.Thermal response measurement and performance evaluation of borehole heat exchangers: a case study in Kazakhstan[J]. Energies, 2022, 15(22): 8490.
[35] 贾鹏琦, 殷勇高, 张思雨, 等. 面向低碳供暖的城市中水余热跨季节储热系统性能分析[J]. 中南大学学报(自然科学版), 2023, 54(10): 4124-4134.
JIA P Q, YIN Y G, ZHANG S Y, et al.Performance analysis of seasonal thermal energy storage system with urban reclaimed water waste heat for low-carbon heating[J]. Journal of Central South University (science and technology), 2023, 54(10): 4124-4134.
[36] DURGA S, BECKERS KF, TAAM M, et al.Techno-economic analysis of decarbonizing building heating in upstate New York using seasonal borehole thermal energy storage[J]. Energy and buildings, 2021, 241: 110890.
[37] SHAH S K, AYE L, RISMANCHI B.Simulated performance of a borehole-coupled heat pump seasonal solar thermal storage system for space heating in cold climate[J]. Solar energy, 2020, 202: 365-385.
[38] PANNO D, BUSCEMI A, BECCALI M, et al.A solar assisted seasonal borehole thermal energy system for a non-residential building in the Mediterranean area[J]. Solar energy, 2019, 192: 120-132.
[39] LI H R, HOU J, HONG T Z, et al.Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres[J]. Energy, 2021, 219: 119582.
[40] 邹海江, 郭思宇, 张林, 等. 浅层地埋管群负荷迁移特性[J]. 化学工程, 2023, 51(12): 77-82.
ZOU H J, GUO S Y, ZHANG L, et al.Shifted load behaviors of borehole heat exchanger array system[J]. Chemical engineering (China), 2023, 51(12): 77-82.
[41] LIM H S, OK J, PARK J S, et al.Efficiency improvement of energy storage and release by the inlet position control for seasonal thermal energy storage[J]. International journal of heat and mass transfer, 2020, 151: 119435.
[42] REES S J.Advances in ground-source heat pump systems[M]. Cambridge: Woodhead Publishing, 2016, 295-327.
[43] LUISA F C.Advances in thermal energy storage systems: methods and applications[M]. Cambridge: Woodhead Publishing, 2015, 117-147.
[44] BAUER D, MARX R, NUßBICKER-LUX J, et al. German central solar heating plants with seasonal heat storage[M]. London: Routledge, 2018, 455-473.
[45] TORDRUP K W, POULSEN S E, BJØRN H. An improved method for upscaling borehole thermal energy storage using inverse finite element modelling[J]. Renewable energy, 2017, 105: 13-21.
[46] RAD F M, FUNG A S, ROSEN M A.An integrated model for designing a solar community heating system with borehole thermal storage[J]. Energy for sustainable development, 2017, 36: 6-15.
[47] LEONG W H, MUDASAR R.Thermodynamic analysis of the performance of sub-critical organic Rankine cycle with borehole thermal energy storage[J]. Procedia computer science, 2019, 155: 543-550.
[48] NORDELL B, ANDERSSON O, RYDELL L, et al.Long-term performance of the HT-BTES in Emmaboda, Sweden[C]//IEA ECES Greenstock 2015. Beijing, China, 2015.
[49] NILSSON E, ROHDIN P.Performance evaluation of an industrial borehole thermal energy storage (BTES) project: experiences from the first seven years of operation[J]. Renewable energy, 2019, 143: 1022-1034.
[50] XU L Y, TORRENS J I, GUO F, et al.Application of large underground seasonal thermal energy storage in district heating system: a model-based energy performance assessment of a pilot system in Chifeng, China[J]. Applied thermal engineering, 2018, 137: 319-328.
[51] SIBBITT B, MCCLENAHAN D, DJEBBAR R, et al.The performance of a high solar fraction seasonal storage district heating system-five years of operation[J]. Energy procedia, 2012, 30: 856-865.

基金

国家重点研发计划(2022YFC3802404); 沈阳市社科联2024年度研究基地课题(SYSK2024-JD-12)

PDF(1881 KB)

Accesses

Citation

Detail

段落导航
相关文章

/