基于多孔介质钻杆的太阳能土壤蒸发取水的实验与分析

黑秉森, 李啸天, 全晓军, 李思雨

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 498-505.

PDF(3160 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3160 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 498-505. DOI: 10.19912/j.0254-0096.tynxb.2024-0509

基于多孔介质钻杆的太阳能土壤蒸发取水的实验与分析

  • 黑秉森1, 李啸天2, 全晓军1, 李思雨1
作者信息 +

EXPERIMENT AND ANALYSIS OF SOLAR POWERED SOIL EVAPORATION WATER EXTRACTION BASED ON POROUS MEDIA DRILL PIPE

  • Hei Bingsen1, Li Xiaotian2, Quan Xiaojun1, Li Siyu1
Author information +
文章历史 +

摘要

该文开发了一套利用菲涅尔透镜聚焦太阳光加热钻杆从土壤中取水的装置,在证明可行性后对其进行优化,可提高钻杆高温区域温度并增强钻杆的透水性,研究土壤含水率和钻杆透水性对取水能力的影响。结果显示,在含水率27.5%、太阳光斑功率为152 W的条件下,优化后的装置每小时取水量可达45 g。该装置可在不投入外界其他形式能量的前提下仅靠太阳光运行,其能量利用效率高达20.41%。

Abstract

This research develops a device that uses a Fresnel lens to focus sunlight to heat a porous media drill pipe to extract water from the soil. After proving the feasibility, the device is optimized to increase the temperature of the high-temperature area of the drill pipe and strengthen the drill pipe water permeability, and studies the effect of soil moisture content and drill pipe water permeability on water extraction capacity. The results show that under the condition of 27.5% moisture content and 152 W solar spot power, the optimized device can take 45 g of water per hour. The experimental device can operate solely on sunlight without inputting other forms of external energy, and its energy utilization efficiency is as high as 20.41%.

关键词

太阳能 / 水分蒸发 / 水资源 / 土壤水分 / 两相流 / 气液相变

Key words

solar energy / evaporation / water resources / soil moisture content / two phase flow / liquid-gas phase change

引用本文

导出引用
黑秉森, 李啸天, 全晓军, 李思雨. 基于多孔介质钻杆的太阳能土壤蒸发取水的实验与分析[J]. 太阳能学报. 2025, 46(8): 498-505 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0509
Hei Bingsen, Li Xiaotian, Quan Xiaojun, Li Siyu. EXPERIMENT AND ANALYSIS OF SOLAR POWERED SOIL EVAPORATION WATER EXTRACTION BASED ON POROUS MEDIA DRILL PIPE[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 498-505 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0509
中图分类号: TK519   

参考文献

[1] United Nations.The United Nations World Water Development Report 2024: Water for Prosperity and Peace[M]. UNESCO, Paris, 2024: 10-12.
[2] ZHUANG S D, QI H S, WANG X Y, et al.Advances in solar-driven hygroscopic water harvesting[J]. Global challenges, 2021, 5(1): 2000085.
[3] 张瑶. 中国水资源利用与经济发展的匹配性研究: 基于农业虚拟水量与水质足迹的测算[D]. 杨凌: 西北农林科技大学, 2022.
ZHANG Y.Research on the matching of water resources utilization and economic development in China: calculation based on agricultural virtual water volume and water quality footprint[D]. Yangling: Northwest A & F University, 2022.
[4] 阿丽亚·阿不都克里木. 中国水资源开发利用现状及改善措施[J]. 能源与节能, 2022(3): 174-176.
ALIYA A.Present situation and improvement measures of water resources development and utilization in China[J]. Energy and energy conservation, 2022(3): 174-176.
[5] 解利昕, 李凭力, 王世昌. 海水淡化技术现状及各种淡化方法评述[J]. 化工进展, 2003, 22(10): 1081-1084.
XIE L X, LI P L, WANG S C.A review of seawater desalination and comparison of desalting processes[J]. Chemical industry and engineering progress, 2003, 22(10): 1081-1084.
[6] 孔慧, 杨锦蕊, 陈靖, 等. 太阳能热法海水淡化发展的关键路径[J]. 太阳能学报, 2023, 44(4): 479-486.
KONG H, YANG J R, CHEN J, et al.Critical path for development of solar thermal seawater desalination[J]. Acta energiae solaris sinica, 2023, 44(4): 479-486.
[7] 郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370.
ZHENG Z Y, LI F C, LI Q, et al.State-of-the-art of R & D on seawater desalination technology[J]. Chinese science bulletin, 2016, 61(21): 2344-2370.
[8] 刘强, 肖维新, 罗渊, 等. 高效海水淡化的太阳能界面蒸发器研究进展[J]. 太阳能学报, 2024, 45(3): 591-602.
LIU Q, XIAO W X, LUO Y, et al.Research progress of solar interfacial evaporators for high-efficiency desalination[J]. Acta energiae solaris sinica, 2024, 45(3): 591-602.
[9] 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020(1): 33-46.
WANG W W, GE T S, DAI Y J, et al.Status of solar-driven sorption-based atmosphere water harvesting[J]. Solar energy, 2020(1): 33-46.
[10] 周永康, 夏鹏. 采用吸附转轮的复合型空气取水系统性能计算[J]. 制冷技术, 2022, 42(6): 39-43.
ZHOU Y K, XIA P.Performance calculation of atmospheric water harvesting system with desiccant wheels-assisted[J]. Chinese journal of refrigeration technology, 2022, 42(6): 39-43.
[11] WAHLGREN R V.Atmospheric water vapour processor designs for potable water production: a review[J]. Water research, 2001, 35(1): 1-22.
[12] 侴乔力, 纵建, 葛新石, 等. 太阳能吸附式和太阳能制冷结露法空气取水器取水效率的分析比较[J]. 太阳能学报, 1996, 17(4): 365-370.
CHOU Q L, ZONG J, GE X S, et al.Comparison of the efficiencies of producing drinking water from air between the apparatus using adsorbents and that using heat pump both by solar energy[J]. Acta energiae solaris sinica, 1996, 17(4): 365-370.
[13] ZHAO B W, WANG L Y, CHUNG T S.Enhanced membrane systems to harvest water and provide comfortable air via dehumidification & moisture condensation[J]. Separation and purification technology, 2019, 220: 136-144.
[14] KIM H, RAO S R, KAPUSTIN E A, et al.Adsorption-based atmospheric water harvesting device for arid climates[J]. Nature communications, 2018, 9(1): 1191.
[15] 邓昊, 陈珍慧, 林越, 等. 太阳能吸附式空气取水材料与系统研究进展[J]. 现代化工, 2023, 43(12): 36-41.
DENG H, CHEN Z H, LIN Y, et al.Research progress on solar energy-driven sorption based atmospheric water harvesting materials and system[J]. Modern chemical industry, 2023, 43(12): 36-41.
[16] 李彦龙. 非饱和黄土结合水特性及水分迁移问题研究[D]. 西安: 西安建筑科技大学, 2015.
LI Y L.Bound water properties and moisture migration in unsaturated loess[D]. Xi’an: Xi’an University of Architecture and Technology, 2015.
[17] 白苗苗. 土壤多孔介质热质传递过程数值模拟与试验研究[D]. 西安: 陕西科技大学, 2016.
BAI M M.Simulation and experimental research on heat mass transfer process of sandy soil porous media[D]. Xi’an: Shaanxi University of Science & Technology, 2016.
[18] LI L X, ZHANG J P.Water harvesting from desert soil via interfacial solar heating under natural sunlight[J]. Journal of colloid and interface science, 2022, 607: 1986-1992.
[19] MENG T T, LI Z T, WAN Z M, et al.MOF-Derived nanoarchitectured carbons in wood sponge enable solar-driven pumping for high-efficiency soil water extraction[J]. Chemical engineering journal, 2023, 452: 139193.
[20] LIU Y W, WANG C, PANG Y, et al.Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit[J]. Acta astronautica, 2023, 202: 386-399.
[21] WANG S Y, GUO P Z, LI L F.Numerical simulation revealing the impact of drilling-based mining equipment structure on water ice extraction from lunar soil[J]. Acta astronautica, 2023, 213: 431-437.
[22] 胡晓蕾. 非饱和土壤一维热湿耦合传递模型与实验研究[D]. 北京: 北京建筑大学, 2018.
HU X L.One-dimensional coupled heat and moisture transfer model and experimental study of unsaturated soil[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2018.
[23] 颜奕波, 胡艳鑫, 黄金, 等. 基于三角形腔体的菲涅尔线聚焦集热系统研究[J]. 太阳能学报, 2024, 45(2): 23-29.
YAN Y B, HU Y X, HUANG J, et al.Research on Fresnel line concerntrating heat collection system based on triangular cavity receiver[J]. Acta energiae solaris sinica, 2024, 45(2): 23-29.
[24] 陈冬冬, 戴永久. 近五十年我国西北地区降水强度变化特征[J]. 大气科学, 2009, 33(5): 923-935.
CHEN D D, DAI Y J.Characteristics of northwest China rainfall intensity in recent 50 years[J]. Chinese journal of atmospheric sciences, 2009, 33(5): 923-935.
[25] 王亚丽. 西北干旱区压砂地坡面垄作模式入渗规律研究[D]. 兰州: 兰州理工大学, 2022.
WANG Y L.Study on infiltration mechanism of ridge tillage on gravel mulched fields in arid region of northwest China[D]. Lanzhou: Lanzhou University of Technology, 2022.
[26] 李正良, 郑宏飞, 陈子乾, 等. 降膜蒸发低温多效太阳能海水淡化系统实验研究[J]. 太阳能学报, 2007, 28(4): 421-426.
LI Z L, ZHENG H F, CHEN Z Q, et al.Experimental studies on a low temperature multi-effect solar desalination system with falling film evaporation[J]. Acta energiae solaris sinica, 2007, 28(4): 421-426.

基金

上海市产业协同创新项目(一种便捷式的太阳能土壤取水装置)

PDF(3160 KB)

Accesses

Citation

Detail

段落导航
相关文章

/