基于全尺寸试验的百米级叶片极限失效分析

赵建刚, 王博文, 张文伟, 冯学斌, 邓航, 刘鹏辉

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 33-38.

PDF(2961 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2961 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 33-38. DOI: 10.19912/j.0254-0096.tynxb.2024-0522

基于全尺寸试验的百米级叶片极限失效分析

  • 赵建刚, 王博文, 张文伟, 冯学斌, 邓航, 刘鹏辉
作者信息 +

ULTIMATE FAILURE ANALYSIS OF 100-METER-CLASS BLADES BASED ON FULL-SCALE TESTING

  • Zhao Jian’gang, Wang Bowen, Zhang Wenwei, Feng Xuebin, Deng Hang, Liu Penghui
Author information +
文章历史 +

摘要

为研究百米级风电叶片在组合极限载荷下的损伤响应,对时代新材TMT90 m+叶片进行全尺寸极限承载力测试。通过试验监测、应变数据分析以及非线性有限元仿真对叶片的失效机理进行研究。结果表明结构非线性、材料非线性导致叶片局部区域在承载高水平载荷时出现应力集中,进而促使局部屈曲的产生,个别区域的提前失效加速了局部屈曲对局部刚度及稳定性的削弱,从而导致叶片最终的断裂失效。

Abstract

To study the damage response of 100-meter-class wind turbine blades under combined ultimate loads, this paper conducted a full-size ultimate load capacity test on the TMT90m+ blade of Zhu Zhou Times New Material Technology Co., Ltd. The failure mechanism of the blade is investigated through test monitoring, strain data analysis, and nonlinear finite element simulation. The results show that structural nonlinearity and material nonlinearity lead to stress concentration in the local area of the blade when carrying high-level loads, which in turn promotes the occureence of local buckling. The early failure of the individual regions accelerates the weakening of local stiffness and stability by local buckling, thus leading to the final fracture failure of the blade.

关键词

风电叶片 / 复合材料 / 有限元分析 / 全尺寸试验 / 局部屈曲

Key words

wind turbine blades / composite material / finite element analysis / full-scale test / local buckling

引用本文

导出引用
赵建刚, 王博文, 张文伟, 冯学斌, 邓航, 刘鹏辉. 基于全尺寸试验的百米级叶片极限失效分析[J]. 太阳能学报. 2025, 46(8): 33-38 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0522
Zhao Jian’gang, Wang Bowen, Zhang Wenwei, Feng Xuebin, Deng Hang, Liu Penghui. ULTIMATE FAILURE ANALYSIS OF 100-METER-CLASS BLADES BASED ON FULL-SCALE TESTING[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 33-38 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0522
中图分类号: TM315   

参考文献

[1] Global Wind Energy Council. Global wind report 2023[R]. 2023.
[2] 王泽栋, 王靛, 漆良文, 等. 考虑大变形的柔性风电叶片气弹性分析[J]. 太阳能学报, 2024, 45(2): 143-151.
WANG Z D, WANG D, QI L W, et al.Dynamic response of flexible wind turbine blades considering large-deflection[J]. Acta energiae solaris sinica, 2024, 45(2): 143-151.
[3] 安宗文, 马军霞, 马强, 等. 风电叶片全尺寸疲劳试验加载方法研究[J]. 太阳能学报, 2021, 42(10): 250-257.
AN Z W, MA J X, MA Q, et al.Study on loading scheme for full-scale fatigue test of wind turbine blades[J]. Acta energiae solaris sinica, 2021, 42(10): 250-257.
[4] JR M L.Root causes and mechanisms of failure of wind turbine blades: overview[J]. Materials, 2022, 15(9): 2959.
[5] 靳交通, 邓航, 侯彬彬, 等. 大尺寸复合材料风机叶片破坏试验机理[J]. 机械设计与研究, 2015, 31(2): 74-76.
JIN J T, DENG H, HOU B B, et al.Structural collapse investigation of the large-scale composite wind turbine blade in static test[J]. Machine design & research, 2015, 31(2): 74-76.
[6] LEE H G, PARK J.Static test until structural collapse after fatigue testing of a full-scale wind turbine blade[J]. Composite structures, 2016, 136: 251-257.
[7] CHEN X.Experimental investigation on structural collapse of a large composite wind turbine blade under combined bending and torsion[J]. Composite structures, 2017, 160: 435-445.
[8] YANG J S, PENG C Y, XIAO J Y, et al.Structural investigation of composite wind turbine blade considering structural collapse in full-scale static tests[J]. Composite structures, 2013, 97: 15-29.
[9] ZHANG L A, GUO Y Z, YU L F, et al.Structural collapse characteristics of a 48.8 m wind turbine blade under ultimate bending loading[J]. Engineering failure analysis, 2019, 106: 104150.
[10] CHEN X, ZHAO W, ZHAO X L, et al.Preliminary failure investigation of a 52.3 m glass/epoxy composite wind turbine blade[J]. Engineering failure analysis, 2014, 44: 345-350.
[11] 曾世龙, 马强, 白学宗, 等. 基于CLD模型的风电叶片延寿区间估计[J]. 太阳能学报, 2024, 45(3): 41-45.
ZENG S L, MA Q, BAI X Z, et al.Estimation of life extension span of wind turbine blades based on CLD model[J]. Acta energiae solaris sinica, 2024, 45(3): 41-45.
[12] ZHANG L A, GUO Y Z, WANG J H, et al.Structural failure test of a 52.5 m wind turbine blade under combined loading[J]. Engineering failure analysis, 2019, 103: 286-293.
[13] 王景华. 风电叶片子部件测试方法及其失效机理研究[D]. 淄博: 山东理工大学, 2023.
WANG J H.Study on testing method and failure mechanism of wind turbine blade subassembly[D]. Zibo: Shandong University of Technology, 2023.
[14] 王博文, 邓航, 张文伟, 等. 基于Abaqus的风力叶片屈曲数值分析与模拟[J]. 系统仿真技术, 2023, 19(4): 308-312.
WANG B W, DENG H, ZHANG W W, et al.Numerical analysis and simulation of wind blade buckling based on Abaqus[J]. System simulation technology, 2023, 19(4): 308-312.
[15] 吴鸿晖, 石可重, 徐建中. 风电叶片腹板结构压缩屈曲与后屈曲行为研究[J]. 太阳能学报, 2023, 44(3): 84-89.
WU H H, SHI K Z, XU J Z.Research on compression buckling and post-buckling behavior of wind turbine blade web structure[J]. Acta energiae solaris sinica, 2023, 44(3): 84-89.

基金

国家重点研发计划(2022YFB3704504)

PDF(2961 KB)

Accesses

Citation

Detail

段落导航
相关文章

/