CH4Cl2Si-SiHCl3-H2体系下硅碳竞争沉积的热力学研究

郭李杰, 袁兴平, 赵丹, 吕庆辉, 谢刚, 侯彦青

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 327-332.

PDF(1782 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1782 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 327-332. DOI: 10.19912/j.0254-0096.tynxb.2024-0524

CH4Cl2Si-SiHCl3-H2体系下硅碳竞争沉积的热力学研究

  • 郭李杰1,2, 袁兴平1, 赵丹1, 吕庆辉1, 谢刚1, 侯彦青1,2
作者信息 +

THERMODYNAMIC STUDY OF SILICA-CARBON COMPETITIVE DEPOSITION IN CH4Cl2Si-SiHCl3-H2 SYSTEM

  • Guo Lijie1,2, Yuan Xingping1, Zhao Dan1, Lyu Qinghui1, Xie Gang1, Hou Yanqing1,2
Author information +
文章历史 +

摘要

为探究碳元素在化学气相沉积过程中的热力学行为,对CH4Cl2Si-SiHCl3-H2体系的平衡气相组分及固相产物进行分析,探究反应温度、系统压强和进气原料配比对硅碳沉积行为的影响。结果表明:在化学气相沉积阶段,硅沉积的热力学条件为1200 ℃、0.1 MPa、物质的量之比n(H2)∶n(SiHCl3)=15∶1时,多晶硅产率最大可达到34.00%;而降低多晶硅产品中碳含量的有利热力学条件是高温、高压以及进气原料中H2过量,在1150 ℃、0.1 MPa和n(H2)∶n(SiHCl3)=50∶1时多晶硅中碳元素的沉积量可降至0.78×10-9以下。

Abstract

To investigate the thermodynamic behavior of carbon in chemical vapor deposition process, the equilibrium gas phase components and solid phase products of the CH4Cl2Si-SiHCl3-H2 system were analyzed. The study also examined the effects of reaction temperature, system pressure, and inlet raw material ratio on silicon carbon deposition behavior.The results indicate that under thermodynamic conditions of 1200 ℃, 0.1 MPa, with a n(H2)∶n(SiHCl3)=15∶1, a maximum polysilicon yield of 34.00% can be achieved. Furthermore, favorable thermodynamic conditions for reducing carbon content in polysilicon products include high temperature, high pressure, and an excess amount of H2 in the intake raw material. Specifically at 1150 ℃ and 0.1 MPa with a n(H2)∶n(SiHCl3)=50∶1, it is found that the amount of carbon deposition in polysilicon can be reduced to less than 0.78×10-9.

关键词

化学气相沉积 / 热力学 / 多晶硅 / 碳原子 / 产物分析 / Si-H-Cl-C体系

Key words

chemical vapor deposition / thermodynamics / polysilicon / carbon atom / product analysis / Si-H-Cl-C system

引用本文

导出引用
郭李杰, 袁兴平, 赵丹, 吕庆辉, 谢刚, 侯彦青. CH4Cl2Si-SiHCl3-H2体系下硅碳竞争沉积的热力学研究[J]. 太阳能学报. 2025, 46(8): 327-332 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0524
Guo Lijie, Yuan Xingping, Zhao Dan, Lyu Qinghui, Xie Gang, Hou Yanqing. THERMODYNAMIC STUDY OF SILICA-CARBON COMPETITIVE DEPOSITION IN CH4Cl2Si-SiHCl3-H2 SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 327-332 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0524
中图分类号: TQ127.2   

参考文献

[1] 张洪斌, 闫涛, 李鹏飞, 等. 电子级多晶硅生产技术分析[J]. 化工设计通讯, 2022, 48(4): 75-77, 80.
ZHANG H B, YAN T, LI P F, et al.Analysis of electronic grade polysilicon production technology[J]. Chemical engineering design communications, 2022, 48(4): 75-77, 80.
[2] 聂陟枫, 戴恩睿, 谢刚, 等. 多晶硅还原炉高频交流电加热机制研究[J]. 太阳能学报, 2021, 42(2): 451-458.
NIE Z F, DAI E R, XIE G, et al.Investigation on heating mechanism of high frequency alternating current in polysilicon reduction furnace[J]. Acta energiae solaris sinica, 2021, 42(2): 451-458.
[3] 张新红. 多晶硅原辅料中碳杂质的分析[J]. 云南化工, 2019, 46(1): 83-84.
ZHANG X H.Analysis of carbon impurities in raw materials of polysilicon production[J]. Yunnan chemical technology, 2019, 46(1): 83-84.
[4] 江华. 我国电子级多晶硅发展情况分析[J]. 科技中国, 2021(4): 64-66.
JIANG H.Analysis on the development of electronic grade polysilicon in China[J]. China Scitechnology think tank, 2021(4): 64-66.
[5] 童孟. 多晶硅产品中碳含量影响因素分析及控制[J]. 化工管理, 2020(2): 31-32.
TONG M.Analysis and control of influencing factors of carbon content in polysilicon products[J]. Chemical enterprise management, 2020(2): 31-32.
[6] 王孟磊, 任世强, 姜大川, 等. 温度梯度对多晶硅感应熔炼除杂效果的影响[J]. 太阳能学报, 2019, 40(3): 797-802.
WANG M L, REN S Q, JIANG D C, et al.Effect of temperature gradient on impurity removal in induction melting of polycrystalline silicon[J]. Acta energiae solaris sinica, 2019, 40(3): 797-802.
[7] 杨典, 王芳, 万烨, 等. 分离三氯氢硅中甲基二氯硅烷的研究进展[J]. 无机盐工业, 2021, 53(3): 30-33, 72.
YANG D, WANG F, WAN Y, et al.Research progress on separation process of methyl dichlorosilane from trichlorsilane[J]. Inorganic chemicals industry, 2021, 53(3): 30-33, 72.
[8] 张鹏远, 杜俊平. 结合多晶硅国家标准浅析电子级多晶硅生产控制要点[J]. 中国有色冶金, 2021, 50(2): 59-63.
ZHANG P Y, DU J P.Manufacture process control of electronic grade polysilicon based on the polysilicon national standard[J]. China nonferrous metallurgy, 2021, 50(2): 59-63.
[9] GB/T 25074—2017, 中国国家标准化管理委员会. 太阳能级多晶硅[S].
GB/T 25074—2017, Solar-grade polycrystalline silicon[S].
[10] GB/T 12963—2022, 电子级多晶硅[S].
GB/T 12963—2022, Electronic-grade polycrystalline silicon[S].
[11] 何鹏, 杨洋. 浅谈多晶硅生产中碳杂质的分布和去除[J]. 世界有色金属, 2022(16): 144-147.
HE P, YANG Y.Discussion on the distribution and removal of carbon impurities in polysilicon production[J]. World nonferrous metals, 2022(16): 144-147.
[12] 张明鑫. 氯硅烷中含碳有机物杂质甲基二氯硅烷转化反应工艺研究[D]. 天津: 天津大学, 2020.
ZHANG M X.Study on conversion process of carbon dichlorosilane impurity methyldichlorosilane in chlorosilane[D]. Tianjin: Tianjin University, 2020.
[13] WAN Y, LIU J H, MAO Q Y, et al.Exploration of photocatalytic chlorination combined simplified distillation to produce electronic grade high-purity trichlorosilane via microchannel reactor experiments, multiphase-flow simulation, ReaxFF MD, and DFT[J]. Chemical engineering journal, 2022, 450: 138020.
[14] 敬瑀, 龚伟, 王恩泽. 化学气相沉积制备Co-Re合金涂层的热力学分析[J]. 功能材料, 2019, 50(3): 3170-3173, 3178.
JING Y, GONG W, WANG E Z.Thermodynamic analysis of chemical vapor deposition process for Co-Re alloy coating[J]. Journal of functional materials, 2019, 50(3): 3170-3173, 3178.
[15] WANG F Y,CHENG L F,LIANG S H.Study on thermodynamics and kinetics of chemical vapor deposition of silicon nitride[J]. Materials research express,2020,7(10): 106410.
[16] 朱艳. 化学气相沉积ZrB2工艺与应用基础[D]. 西安: 西北工业大学, 2018.
ZHU Y.Preparation and application of Zirconium Diboride by chemical vapor deposition[D]. Xi’an: Northwestern Polytechnical University, 2018.
[17] 侯彦青. 改良西门子法制备多晶硅过程的理论分析及建模[D]. 昆明: 昆明理工大学, 2013.
HOU Y Q.Theoretical analysis and modeling of polysilicon preparation process by improved Siemens method[D]. Kunming: Kunming University of Science and Technology, 2013.

基金

国家自然科学基金(22168019)

PDF(1782 KB)

Accesses

Citation

Detail

段落导航
相关文章

/