对后向凝视法在定日镜面形检测中的应用进行深入探讨,针对传统方法中太阳形状模型与实际太阳形状拟合误差较大以及处理复杂不规则定日镜反射图像时算法不适用的问题,采用图像处理技术,分析5种太阳形状模型与实际太阳形状的拟合误差。基于统计优化霍夫变换等技术,提出一种适用于不规则定日镜图像的倾斜校正与配准算法。实验表明:Buie模型的拟合精度最高,且更符合实际的太阳亮度分布规律;此外,校正算法实现了0.03°的倾斜校正精度和±1像素内的配准精度。该研究成果可为基于后向凝视法的定日镜面形检测提供更符合实际的太阳形状模型,且可直接用于面形计算的定日镜图像。
Abstract
This study delves into the application of the backward-gazing method in heliostat surface shape detection. It addresses issues in traditional methods, such as significant fitting errors between the solar shape model and the actual solar shape, and the inapplicability of algorithms for complex, irregular heliostat reflection images. Using image processing techniques, the study analyzes the fitting errors of five solar shape models compared to the actual solar shape. Additionally, it proposes an algorithm for tilt correction and registration suitable for irregular heliostat images, based on techniques like statistical optimization and Hough transform. Experimental results indicate that the Buie model has the highest fitting accuracy and better matches the actual solar brightness distribution. Furthermore, the correction algorithm achieves a tilt correction accuracy of 0.03° and a registration accuracy within ±1 pixel. The findings of this study provide a more accurate solar shape model and heliostat images that can be directly used for surface shape calculations in backward-gazing heliostat shape detection methods.
关键词
太阳能 /
太阳能聚光发电 /
定日镜 /
图像处理 /
霍夫变换 /
图像分割
Key words
solar energy /
concentrated solar power /
heliostats /
image processing /
Hough transform /
image segmentation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王志峰, 何雅玲, 康重庆, 等. 明确太阳能热发电战略定位促进技术发展[J]. 华电技术, 2021, 43(11): 1-4.
WANG Z F, HE Y L, KANG C Q, et al.Strategic positioning of solar thermal power generation to promote technological progress[J]. Huadian technology, 2021, 43(11): 1-4.
[2] 黄鹏霖, 臧春城, 王志峰, 等. 基于光-机耦合的太阳炉聚光性能分析[J]. 太阳能学报, 2023, 44(7): 264-270.
HUANG P L, ZANG C C, WANG Z F, et al.Analysis of concentrating performance of solar furnace based on optical-structural coupling[J]. Acta energiae solaris sinica, 2023, 44(7): 264-270.
[3] 吴卫祥, 李正农, 王志峰. 塔式太阳能定日镜抗风设计参数研究[J]. 太阳能学报, 2021, 42(6): 191-197.
WU W X, LI Z N, WANG Z F.Investigation on wind-resistant design parameters of solar power tower’s heliostat based on wind tunnel experiments[J]. Acta energiae solaris sinica, 2021, 42(6): 191-197.
[4] MARANO M, EMES M J, JAFARI A, et al.Effect of facet gap on heliostat wind loading[J]. Solar energy, 2024, 271: 112428.
[5] EDDHIBI F, BEN HAJ ALI A, BEN AMARA M, et al. A novel mathematical approach for the optical efficiency optimization of solar tower power plant technology[J]. International journal of energy research, 2022, 46(3): 2477-2499.
[6] ULMER S, MÄRZ T, PRAHL C, et al. Automated high resolution measurement of heliostat slope errors[J]. Solar energy, 2011, 85(4): 681-687.
[7] MITCHELL R A, ZHU G D.A non-intrusive optical (NIO) approach to characterize heliostats in utility-scale power tower plants: methodology and in situ validation[J]. Solar energy, 2020, 209: 431-445.
[8] SÁNCHEZ-GONZÁLEZ A, LOZANO-CANCELAS A, MORALES-SÁNCHEZ R, et al. Canting heliostats with computer vision and theoretical imaging[J]. Renewable energy, 2022, 200: 957-969.
[9] ANGEL R, EADS R, KAUTZ M.Accurate measurement of heliostat reflector shapes, using fully-sampled starlight images[C]//AIP Publishing: Proceedings of the AIP Conference Proceedings. Colorado, USA, 2023.
[10] KESSELI D, ZHU G, MITCHELL R, et al.Measurement of heliostat mirrors using reflected targets[C]//Proceedings of the Advances in Solar Energy: Heliostat Systems Design, Implementation, and Operation, California, USA, 2023.
[11] COQUAND M, HENAULT F, CALIOT C.Backward-gazing method for measuring solar concentrators shape errors[J]. Applied optics, 2017, 56(7): 2029-2037.
[12] HÉNAULT F, CALIOT C, COQUAND M, et al. Sun backward gazing method for measuring optomechanical errors of solar concentrators: experimental results[J]. Applied optics, 2020, 59(31): 9861-9877.
[13] DEFIEUX P-H.Méthode optique hybride pour la caractérisation d'un champ d'héliostats dans une installation solaire à concentration[D]. Université de Perpignan, 2021.
[14] JOSE P D.The flux through the focal spot of a solar furnace[J]. Solar energy, 1957, 1(4): 19-22.
[15] HÉNAULT F, CALIOT C, COQUAND M, et al. Sun backward gazing method for measuring optomechanical errors of solar concentrators: experimental results[J]. Applied optics, 2020, 59(31): 9861-9877.
[16] HUKUO N, MII H.Design problems of a solar furnace[J]. Solar energy, 1957, 1(2/3): 108-114.
[17] BUTLER B, PETTIT R.Optical Evaluation Techniques For Reflecting Solar Concentrators[M]. SPIE, 1977.
[18] BUIE D, MONGER A G, DEY C J.Sunshape distributions for terrestrial solar simulations[J]. Solar energy, 2003, 74(2): 113-122.
[19] HUANG W D, HU P, CHEN Z S.Performance simulation of a parabolic trough solar collector[J]. Solar energy, 2012, 86(2): 746-755.
基金
国家重点研发计划(2023YFB4204301)