模块化热激活墙体性能优化与节能潜力研究

陈萨如拉, 陈坤宇, 杨洋, 陈天航, 许杰青, 鲍学芳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 514-523.

PDF(5463 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5463 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 514-523. DOI: 10.19912/j.0254-0096.tynxb.2024-0539

模块化热激活墙体性能优化与节能潜力研究

  • 陈萨如拉1, 陈坤宇1, 杨洋2, 陈天航1, 许杰青1, 鲍学芳1
作者信息 +

PERFORMANCE OPTIMIZATION AND ENERGY-SAVING POTENTIAL STUDY OF MODULAR THERMO-ACTIVATED WALL

  • Chen Sarula1, Chen Kunyu1, Yang Yang2, Chen Tianhang1, Xu Jieqing1, Bao Xuefang1
Author information +
文章历史 +

摘要

针对常规热激活墙体(CTAW)热能注入过程中注热速率与热扩散速率不匹配问题,提出一种内部设有特定孔道用于填充热扩散性填料的模块化热激活墙体(MTAW),并基于经实验验证的传热模型探索填料腔尺寸(ab)与填料导热系数(λf)对MTAW热行为、能耗及热舒适性影响。结果表明:MTAW动态热行为相比CTAW及普通节能墙体(CW)提升显著且提升效果随abλf增加而增加;强化注能设计可使嵌管周围热量沿径向方向向远边界进行传递,MTAW内部不可热屏障的连续性与稳定性明显优于CTAW;增加abλf对于提升内墙面辐射热舒适与墙体节能效果有积极影响,MTAW相比CTAW的节能效果提升达42.3%,提升效果随嵌管间距缩小更为明显。

Abstract

To address the mismatch between the heat injection rate and heat diffusion rate in conventional thermo-activated walls(CTAW) during heat injection, a modular thermo-activated wall (MTAW) with specific internal channels is proposed. The effects of filler cavity size (ab) and thermal conductivity of the filler (λf) on dynamic thermal behavior, energy consumption, and thermal comfort are investigated based on a validated numerical model. Results indicate that the dynamic thermal behavior of MTAW can be significantly enhanced, with improvement correlating positively with increases in the a∶b and λf. Besides, the enhanced heat injection design can ensure effective radial heat transfer from the pipes to the far boundary, resulting in better continuity and stability of the invisible thermal barrier compared to CTAW. Moreover, increasing a∶b and λf can positively impact radiant thermal comfort and energy savings. Compared to CTAW, the energy-saving efficiency of MTAW can be enhanced by up 42.3%. The improvement effect becomes more obvious as the spacing of the embedded tubes decreases.

关键词

太阳能 / 数值模拟 / 节能 / 主动保温 / 低品位能源高效利用

Key words

solar energy / numerical simulation / energy saving / active insulation / efficient utilization of low-grade energy

引用本文

导出引用
陈萨如拉, 陈坤宇, 杨洋, 陈天航, 许杰青, 鲍学芳. 模块化热激活墙体性能优化与节能潜力研究[J]. 太阳能学报. 2025, 46(8): 514-523 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0539
Chen Sarula, Chen Kunyu, Yang Yang, Chen Tianhang, Xu Jieqing, Bao Xuefang. PERFORMANCE OPTIMIZATION AND ENERGY-SAVING POTENTIAL STUDY OF MODULAR THERMO-ACTIVATED WALL[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 514-523 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0539
中图分类号: TU111.4   

参考文献

[1] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG C Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[2] 张志刚, 苏珂, 姚万祥. 热管置入式墙体在实际建筑中的传热特性研究[J]. 太阳能学报, 2022, 43(10): 1-6.
ZHANG Z G, SU K, YAO W X.Study on heat transfer characteristics of wall implanted with heat pipes in actual buildings[J]. Acta energiae solaris sinica, 2022, 43(10): 1-6.
[3] 余才锐, 沈冬梅, 何伟, 等. 基于辐射制冷和微槽道热管的相变墙体实验研究[J]. 太阳能学报, 2020, 41(4): 123-128.
YU C R, SHEN D M, HE W, et al.Experimental research on phase change wall based on sky radiative cooling and micro-channel heat pipe[J]. Acta energiae solaris sinica, 2020, 41(4): 123-128.
[4] 胡中停, 余鹏坤, 陈明想, 等. 基于微通道板强化换热的多功能百叶集热墙模块实验研究[J]. 太阳能学报, 2022, 43(2): 246-249.
HU Z T, YU P K, CHEN M X, et al.Experiment analysis of multi-functional Trombe wall modul based on enhanced heat transfer micro-channel plate[J]. Acta energiae solaris sinica, 2022, 43(2): 246-249.
[5] LEHMANN B, DORER V, KOSCHENZ M.Application range of thermally activated building systems tabs[J]. Energy and buildings, 2007, 39(5): 593-598.
[6] CUI H X, OVEREND M.A review of heat transfer characteristics of switchable insulation technologies for thermally adaptive building envelopes[J]. Energy and buildings, 2019, 199: 427-444.
[7] 杨洋, 陈萨如拉. 嵌管式热激活复合墙体综合能量特性全局敏感性研究[J]. 太阳能学报, 2023, 44(7): 248-256.
YANG Y, CHEN S R L. Global sensitivity analysis on thermal performances of pipe-embedded thermo-activated composite wall[J]. Acta energiae solaris sinica, 2023, 44(7): 248-256.
[8] JIANG S H, LI X T, LYU W H, et al.Numerical investigation of the energy efficiency of a serial pipe-embedded external wall system considering water temperature changes in the pipeline[J]. Journal of building engineering, 2020, 31: 101435.
[9] GUO H A.Optimize the location of embedded pipes by using low-grade natural thermal energy/waste heat for thermal activated façade[J]. International journal of mechanical engineering and applications, 2023, 11(1): 9-25.
[10] ZHAO Y X, ZHA F H, LI X T.A simplified method for the thermal performance analysis of double-layer pipe-embedded external wall[J]. Journal of building engineering, 2023, 80: 108155.
[11] CHEN S, CHANG T X, YANG Y.Summer thermal and energy performances assessment of a modular hydronic thermal barrier wall for ultra-low energy buildings-a field experimental study[J]. Applied thermal engineering, 2024, 236: 121491.
[12] SHEN C, LI X T.Energy saving potential of pipe-embedded building envelope utilizing low-temperature hot water in the heating season[J]. Energy and buildings, 2017, 138: 318-331.
[13] ZHU L, YANG Y, CHEN S, et al.Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials[J]. Applied thermal engineering, 2018, 138: 35-47.
[14] FOROUZANDEH A.Comparative analysis of Sol-air temperature in typical open and semi-closed courtyard spaces[J]. Building simulation, 2022, 15(6): 957-973.
[15] O’CALLAGHAN P W, PROBERT S D. Sol-air temperature[J]. Applied energy, 1977, 3(4): 307-311.
[16] GB 50176—2016, 民用建筑热工设计规范[S].
GB 50176—2016, Code for thermal design of civil building[S].
[17] 中国气象局气象信息中心气象资料室.中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社,2005.
China Meteorological Administration Meteorological Information Center, Climatological Data Room. China Meteorological Data Set for Building Thermal Environment Analysis[M]. Beijing: China Architecture & Building Press, 2005.
[18] ŠIMKO M, KRAJČÍK M, ŠIKULA O, et al. Insulation panels for active control of heat transfer in walls operated as space heating or as a thermal barrier: numerical simulations and experiments[J]. Energy and buildings, 2018, 158: 135-146.
[19] CHEN S, YANG Y, OLOMI C, et al.Numerical study on the winter thermal performance and energy saving potential of thermo-activated PCM composite wall in existing buildings[J]. Building simulation, 2020, 13(2): 237-256.

基金

国家自然科学基金(52208103); 中央高校基本科研业务经费(JZ2024HGTB0229); 智能建筑与建筑节能安徽省重点实验室课题(IBES2024ZR03; IBES2024KF05)

PDF(5463 KB)

Accesses

Citation

Detail

段落导航
相关文章

/