PHOTOVOLTAIC MODULES FAULT DETECTION MODEL BASED ON YOLOv7
Zhang Wenxin1, Zhou Yu2, Wang Jinsong3, Li Zhongyan1,2
Author information+
1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China; 2. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China; 3. North China Electric Power Test and Research Institute, China Datang Corporation Science and Technology General Research Institute Co., Ltd., Beijing 100043, China
Aiming at the hot spot and dust fault of photovoltaic modules, this paper proposes a fault detection model based on YOLOv7. Firstly, a Data Augmentation method combining Mosaic and Mixup is introduced to expand the image dataset and enhance the model's generalization ability. Secondly, the Coordinate Attention mechanism is incorporated to effectively focus on channel features and spatial features while addressing long-range dependence issues. The experimental results show that the accuracy of the improved YOLOv7 model in detecting photovoltaic modules,dust faults and hot spot faults reaches 96.08%, 83.92% and 77.19% respectively, which is 3.66 percentage points, 1.90 percentage points and 2.27 percentage points higher than that of the original model. The mean average precision(mAP) increases from 82.48% to 83.05%. The accuracy of the model is improved and the robustness is enhanced to meet the needs of practical applications.
Zhang Wenxin, Zhou Yu, Wang Jinsong, Li Zhongyan.
PHOTOVOLTAIC MODULES FAULT DETECTION MODEL BASED ON YOLOv7[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 333-340 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0540
中图分类号:
TK514
TP391
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184. JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating pv arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184. [2] 李洁, 袁知博, 秦嘉悦. 基于Sobel算子边缘检测的太阳电池缺陷特征提取方法[J]. 太阳能学报, 2021, 42(1): 63-68. LI J, YUAN Z B, QIN J Y.Research on solar cells defects feature extraction based on Sobel operator edge detection[J]. Acta energiae solaris sinica, 2021, 42(1): 63-68. [3] 刘志清, 兰奇逊, 徐林, 等. 基于图像处理的光伏局部阴影区域分割方法[J]. 太阳能学报, 2023, 44(2): 391-398. LIU Z Q, LAN Q X, XU L, et al.Partial shading region segmentation of photovoltaic systems based on image processing[J]. Acta energiae solaris sinica, 2023, 44(2): 391-398. [4] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149. [5] LIU W, ANGUELOV D, ERHAN D, et al.SSD: single shot MultiBox detector[M]. Cham: Springer International Publishing, 2016: 21-37. [6] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 779-788. [7] 周颖, 叶红, 王彤, 等. 基于多尺度CNN的光伏组件缺陷识别[J]. 太阳能学报, 2022, 43(2): 211-216. ZHOU Y, YE H, WANG T, et al.Photovoltaic module defect identification based on mulit-scale convolution neural network[J]. Acta energiae solaris sinica, 2022, 43(2): 211-216. [8] 周颖, 王如意, 袁梓桐, 等. 一种高效双路径注意力太阳电池缺陷检测网络[J]. 太阳能学报, 2023, 44(4): 407-413. ZHOU Y, WANG R Y, YUAN Z T, et al.An efficient dual-path attention solar cell defect detection network[J]. Acta energiae solaris sinica, 2023, 44(4): 407-413. [9] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417. WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417. [10] 王道累, 李明山, 姚勇, 等. 改进SSD的光伏组件热斑缺陷检测方法[J]. 太阳能学报, 2023, 44(4): 420-425. WANG D L, LI M S, YAO Y, et al.Method of hotspot detection of photovoltaic panels modules on improved SSD[J]. Acta energiae solaris sinica, 2023, 44(4): 420-425. [11] 王道累, 姚勇, 张世恒, 等. 基于红外热图像的光伏组件热斑深度学习检测方法[J]. 中国电机工程学报, 2023, 43(24): 9608-9616. WANG D L, YAO Y, ZHANG S H, et al.Deep learning detection method of photovoltaic module hot spot based on infrared thermal image[J]. Proceedings of the CSEE, 2023, 43(24): 9608-9616. [12] DI TOMMASO A, BETTI A, FONTANELLI G, et al.A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle[J]. Renewable energy, 2022, 193: 941-962. [13] MENG Z Y, XU S Z, WANG L C, et al.Defect object detection algorithm for electroluminescence image defects of photovoltaic modules based on deep learning[J]. Energy science & engineering, 2022, 10(3): 800-813. [14] 牛小育, 刘长良, 刘卫亮, 等. 基于深度学习的光伏红外图像热斑检测方法[J]. 太阳能学报, 2024, 45(11): 272-281. NIU X Y, LIU C L, LIU W L, et al.Heat spot detection method of photovoltaic infrared image based on deep learning[J]. Acta energiae solaris sinica, 2024, 45(11): 272-281. [15] 孙海蓉, 刘永朋, 周黎辉. 基于轻量化YOLOv5s的光伏热斑检测定位方法[J]. 太阳能学报, 2024, 45(11): 282-288. SUN H R, LIU Y P, ZHOU L H.Photovoltaic hot spot detection and positioning method based on lightweight YOLOv5s[J]. Acta energiae solaris sinica, 2024, 45(11): 282-288. [16] 廖力达, 罗晓, 黄斌, 等. 复杂背景下的多晶硅太阳电池缺陷检测[J]. 太阳能学报, 2024, 45(9): 295-303. LIAO L D, LUO X, HUANG B, et al.Detection of defects in polysilicon solar cells in complex backgrounds[J]. Acta energiae solaris sinica, 2024, 45(9): 295-303. [17] WANG C Y, BOCHKOVSKIY A, LIAO H M.YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Vancouver, BC, Canada, 2023: 7464-7475. [18] ZHANG M, YIN L J.Solar cell surface defect detection based on improved YOLOv5[J]. IEEE access, 2022, 10: 80804-80815. [19] HOU Q B, ZHOU D Q, FENG J S.Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 13708-13717. [20] 王道累, 姚从荣, 李超, 等. 光伏组件热斑效应智能化检测的综述及展望[J]. 太阳能学报, 2024, 45(5): 527-536. WANG D L, YAO C R, LI C, et al.Overview and prospect of intelligent detection of hot spot effect of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(5): 527-536. [21] 陈宇翔, 崔凝, 李斌, 等. 积灰性质对光伏组件输出性能影响研究[J]. 太阳能学报, 2024, 45(1): 11-19. CHEN Y X, CUI N, LI B, et al.Research on effect of dust deposition properties on output performance of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(1): 11-19. [22] SALAMAH T, RAMAHI A, ALAMARA K, et al.Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: comprehensive review[J]. Science of the total environment, 2022, 827: 154050.