基于YOLOv7的光伏组件故障检测模型

张文馨, 周宇, 王劲松, 李忠艳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 333-340.

PDF(2971 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2971 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 333-340. DOI: 10.19912/j.0254-0096.tynxb.2024-0540

基于YOLOv7的光伏组件故障检测模型

  • 张文馨1, 周宇2, 王劲松3, 李忠艳1,2
作者信息 +

PHOTOVOLTAIC MODULES FAULT DETECTION MODEL BASED ON YOLOv7

  • Zhang Wenxin1, Zhou Yu2, Wang Jinsong3, Li Zhongyan1,2
Author information +
文章历史 +

摘要

针对光伏组件的热斑和蒙尘故障,提出基于YOLOv7的故障检测模型。首先,引入Mosaic与Mixup结合的数据增强方法扩充图像数据集,提高模型的泛化能力;其次,引入坐标注意力机制(CA),不仅能关注通道特征和空间特征,还能解决长程依赖的问题。实验结果表明,改进后的YOLOv7模型在检测光伏组件、蒙尘以及热斑故障时的准确率分别达到96.08%、83.92%以及77.19%,与原始模型相比分别提升3.66个百分点、1.90个百分点以及2.27个百分点;mAP值由82.48%提升至83.05%;模型精度提高,鲁棒性增强,满足实际应用需求。

Abstract

Aiming at the hot spot and dust fault of photovoltaic modules, this paper proposes a fault detection model based on YOLOv7. Firstly, a Data Augmentation method combining Mosaic and Mixup is introduced to expand the image dataset and enhance the model's generalization ability. Secondly, the Coordinate Attention mechanism is incorporated to effectively focus on channel features and spatial features while addressing long-range dependence issues. The experimental results show that the accuracy of the improved YOLOv7 model in detecting photovoltaic modules,dust faults and hot spot faults reaches 96.08%, 83.92% and 77.19% respectively, which is 3.66 percentage points, 1.90 percentage points and 2.27 percentage points higher than that of the original model. The mean average precision(mAP) increases from 82.48% to 83.05%. The accuracy of the model is improved and the robustness is enhanced to meet the needs of practical applications.

关键词

光伏组件 / 目标检测 / 深度学习 / 卷积神经网络 / 图像处理

Key words

PV modules / object detection / deep learning / convolutional neural network / image processing

引用本文

导出引用
张文馨, 周宇, 王劲松, 李忠艳. 基于YOLOv7的光伏组件故障检测模型[J]. 太阳能学报. 2025, 46(8): 333-340 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0540
Zhang Wenxin, Zhou Yu, Wang Jinsong, Li Zhongyan. PHOTOVOLTAIC MODULES FAULT DETECTION MODEL BASED ON YOLOv7[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 333-340 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0540
中图分类号: TK514    TP391   

参考文献

[1] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating pv arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[2] 李洁, 袁知博, 秦嘉悦. 基于Sobel算子边缘检测的太阳电池缺陷特征提取方法[J]. 太阳能学报, 2021, 42(1): 63-68.
LI J, YUAN Z B, QIN J Y.Research on solar cells defects feature extraction based on Sobel operator edge detection[J]. Acta energiae solaris sinica, 2021, 42(1): 63-68.
[3] 刘志清, 兰奇逊, 徐林, 等. 基于图像处理的光伏局部阴影区域分割方法[J]. 太阳能学报, 2023, 44(2): 391-398.
LIU Z Q, LAN Q X, XU L, et al.Partial shading region segmentation of photovoltaic systems based on image processing[J]. Acta energiae solaris sinica, 2023, 44(2): 391-398.
[4] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[5] LIU W, ANGUELOV D, ERHAN D, et al.SSD: single shot MultiBox detector[M]. Cham: Springer International Publishing, 2016: 21-37.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 779-788.
[7] 周颖, 叶红, 王彤, 等. 基于多尺度CNN的光伏组件缺陷识别[J]. 太阳能学报, 2022, 43(2): 211-216.
ZHOU Y, YE H, WANG T, et al.Photovoltaic module defect identification based on mulit-scale convolution neural network[J]. Acta energiae solaris sinica, 2022, 43(2): 211-216.
[8] 周颖, 王如意, 袁梓桐, 等. 一种高效双路径注意力太阳电池缺陷检测网络[J]. 太阳能学报, 2023, 44(4): 407-413.
ZHOU Y, WANG R Y, YUAN Z T, et al.An efficient dual-path attention solar cell defect detection network[J]. Acta energiae solaris sinica, 2023, 44(4): 407-413.
[9] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[10] 王道累, 李明山, 姚勇, 等. 改进SSD的光伏组件热斑缺陷检测方法[J]. 太阳能学报, 2023, 44(4): 420-425.
WANG D L, LI M S, YAO Y, et al.Method of hotspot detection of photovoltaic panels modules on improved SSD[J]. Acta energiae solaris sinica, 2023, 44(4): 420-425.
[11] 王道累, 姚勇, 张世恒, 等. 基于红外热图像的光伏组件热斑深度学习检测方法[J]. 中国电机工程学报, 2023, 43(24): 9608-9616.
WANG D L, YAO Y, ZHANG S H, et al.Deep learning detection method of photovoltaic module hot spot based on infrared thermal image[J]. Proceedings of the CSEE, 2023, 43(24): 9608-9616.
[12] DI TOMMASO A, BETTI A, FONTANELLI G, et al.A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle[J]. Renewable energy, 2022, 193: 941-962.
[13] MENG Z Y, XU S Z, WANG L C, et al.Defect object detection algorithm for electroluminescence image defects of photovoltaic modules based on deep learning[J]. Energy science & engineering, 2022, 10(3): 800-813.
[14] 牛小育, 刘长良, 刘卫亮, 等. 基于深度学习的光伏红外图像热斑检测方法[J]. 太阳能学报, 2024, 45(11): 272-281.
NIU X Y, LIU C L, LIU W L, et al.Heat spot detection method of photovoltaic infrared image based on deep learning[J]. Acta energiae solaris sinica, 2024, 45(11): 272-281.
[15] 孙海蓉, 刘永朋, 周黎辉. 基于轻量化YOLOv5s的光伏热斑检测定位方法[J]. 太阳能学报, 2024, 45(11): 282-288.
SUN H R, LIU Y P, ZHOU L H.Photovoltaic hot spot detection and positioning method based on lightweight YOLOv5s[J]. Acta energiae solaris sinica, 2024, 45(11): 282-288.
[16] 廖力达, 罗晓, 黄斌, 等. 复杂背景下的多晶硅太阳电池缺陷检测[J]. 太阳能学报, 2024, 45(9): 295-303.
LIAO L D, LUO X, HUANG B, et al.Detection of defects in polysilicon solar cells in complex backgrounds[J]. Acta energiae solaris sinica, 2024, 45(9): 295-303.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H M.YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Vancouver, BC, Canada, 2023: 7464-7475.
[18] ZHANG M, YIN L J.Solar cell surface defect detection based on improved YOLOv5[J]. IEEE access, 2022, 10: 80804-80815.
[19] HOU Q B, ZHOU D Q, FENG J S.Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 13708-13717.
[20] 王道累, 姚从荣, 李超, 等. 光伏组件热斑效应智能化检测的综述及展望[J]. 太阳能学报, 2024, 45(5): 527-536.
WANG D L, YAO C R, LI C, et al.Overview and prospect of intelligent detection of hot spot effect of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(5): 527-536.
[21] 陈宇翔, 崔凝, 李斌, 等. 积灰性质对光伏组件输出性能影响研究[J]. 太阳能学报, 2024, 45(1): 11-19.
CHEN Y X, CUI N, LI B, et al.Research on effect of dust deposition properties on output performance of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(1): 11-19.
[22] SALAMAH T, RAMAHI A, ALAMARA K, et al.Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: comprehensive review[J]. Science of the total environment, 2022, 827: 154050.

基金

国家重点研发计划(2020YFB1707802); 国家自然科学基金(12071131)

PDF(2971 KB)

Accesses

Citation

Detail

段落导航
相关文章

/