基于混合算法的温差发电系统最大功率跟踪控制研究

刘新宇, 李格, 李继方, 徐斌, 刘洁, 王堃阳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 606-611.

PDF(1898 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1898 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 606-611. DOI: 10.19912/j.0254-0096.tynxb.2024-0542

基于混合算法的温差发电系统最大功率跟踪控制研究

  • 刘新宇, 李格, 李继方, 徐斌, 刘洁, 王堃阳
作者信息 +

RESEARCH ON MAXIMUM POWER POINT TRACKING CONTROL OF THERMOELECTRIC POWER GENERATION SYSTEM BASED ON HYBRID ALGORITHM

  • Liu Xinyu, Li Ge, Li Jifang, Xu Bin, Liu Jie, Wang Kunyang
Author information +
文章历史 +

摘要

在研究最大功率点跟踪控制策略的基础上,搭建温差发电系统仿真和实验模型,研究两种控制策略下温差发电系统的实际输出功率。结果表明:在功率振荡显著、脉冲电压大的问题上,混合CVT&GA下系统输出最稳定,功率振荡程度最小。恒定电压法和混合CVT&GA中发电效率均可达99.2%以上,两种控制策略下的系统输出均在0.1 s前可达到稳定状态。

Abstract

On the basis of studying the maximum power point tracking control strategy, a simulation and experimental model of the tthermoelectric difference power generation system are built to study the actual output power of the thermoelectric difference power generation system under the two control strategies. The results show that the system output under the hybrid constant voltage tracking method & genetic algorithms CVT&GA) is the most stable and the degree of power oscillation is the smallest in the case of significant power oscillation and high pulse voltage. The power generation efficiency of both the constant voltage method and the hybrid CVT&GA algorithm can reach more than 99.2%, and the system output under both control strategies can reach the steady state before 0.1 s.

关键词

温差发电 / 最大功率跟踪控制 / 遗传算法 / 超调扰动 / 系统稳定

Key words

thermoelectric power generation / maximum power tracking control / genetic algorithm / overshoot disturbance / system stability

引用本文

导出引用
刘新宇, 李格, 李继方, 徐斌, 刘洁, 王堃阳. 基于混合算法的温差发电系统最大功率跟踪控制研究[J]. 太阳能学报. 2025, 46(8): 606-611 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0542
Liu Xinyu, Li Ge, Li Jifang, Xu Bin, Liu Jie, Wang Kunyang. RESEARCH ON MAXIMUM POWER POINT TRACKING CONTROL OF THERMOELECTRIC POWER GENERATION SYSTEM BASED ON HYBRID ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 606-611 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0542
中图分类号: TM913   

参考文献

[1] 韩翔宇, 纽春萍, 何海龙, 等. 基于优化增量电导法的温差发电最大功率点跟踪策略[J]. 高压电器, 2023, 59(11): 240-249.
HAN X Y, NIU C P, HE H L, et al.Maximum power point tracking strategy for thermoelectric generation based on optimized incremental conductance method[J]. High voltage apparatus, 2023, 59(11): 240-249.
[2] MIAO Z, MENG X N, LIU L.Analyzing and optimizing the power generation performance of thermoelectric generators based on an industrial environment[J]. Journal of power sources, 2022, 541: 231699.
[3] CHEN X G, HUANG Y W, CHEN Z.Energy and exergy analysis of an integrated photovoltaic module and two-stage thermoelectric generator system[J]. Applied thermal engineering, 2022, 212: 118605.
[4] CHARGUI R, BECHIR N, TASHTOUSH B.A novel hybrid solar water heater system integrated with thermoelectric generators: experimental and numerical analysis[J]. Journal of cleaner production, 2022, 368: 133119.
[5] SAHLI H, ELAKHDAR M, TASHTOUSH B, et al.Analysis of a hybrid solar absorption cooling system with thermoelectric generator[J]. Thermal science and engineering progress, 2022, 35: 101474.
[6] 文康凯, 黄跃武. 非均质温差发电器的性能分析[J]. 太阳能学报, 2022, 43(3): 263-267.
WEN K K, HUANG Y W.Performance analysis of inhomogeneous thermoelectric generator[J]. Acta energiae solaris sinica, 2022, 43(3): 263-267.
[7] 王涛, 胡申华, 马湘蓉, 等. 非均匀温度分布下温差发电系统的多峰值寻优[J]. 电源技术, 2023, 47(9): 1210-1214.
WANG T, HU S H, MA X R, et al.Multi-peak optimization strategy for thermoelectric power generation system under non-uniform temperature distribution[J]. Chinese journal of power sources, 2023, 47(9): 1210-1214.
[8] 王江超. 太阳能养老机器人的设计研究[D]. 天津: 天津理工大学, 2023.
WANG J C.Design and research of solar energy elderly care robot[D]. Tianjin: Tianjin University of Technology, 2023.
[9] 刘新宇, 原绍恒, 徐斌, 等. 基于单层MNCl(M=Zr, Hf)的温差发电模型仿真分析[J]. 太阳能学报, 2022, 43(2): 351-356.
LIU X Y, YUAN S H, XU B, et al.Analysis and simulation of thermoelectric power generation based on monolayers MNCL(M=Zr, Hf)[J]. Acta energiae solaris sinica, 2022, 43(2): 351-356.
[10] 赵华芳. 光伏并网发电系统控制策略研究[D]. 东营: 中国石油大学(华东), 2018.
ZHAO H F.Research on control strategy of PV grid-connected power generation system[D]. Dongying: China University of Petroleum (Huadong), 2018.
[11] 张浙熠, 高慧敏, 傅文珍. 一种用于MPPT的改进型遗传算法[J]. 太阳能, 2019(11): 58-61.
ZHANG Z Y,GAO H M, FU W,Z. An improved genetic algorithm for MPPT[J]. Solar energy, 2019(11): 58-61.
[12] 王军, 张超震, 董彦, 等. 温差发电模型的热电性能数值计算和分析[J]. 太阳能学报, 2019, 40(1): 44-50.
WANG J, ZHANG C Z, DONG Y, et al.Numerical caculation and analysis on properties of thermoelectric generation model[J]. Acta energiae solaris sinica, 2019, 40(1): 44-50.
[13] 高岩, 李强, 张勇, 等. 电磁阀节流孔板与过滤网的间隙对推力器室压的影响[J]. 导弹与航天运载技术(中英文), 2023(4): 31-37.
GAO Y, LI Q, ZHANG Y, et al.The influence of the gap between the orifice plate of the solenoid valve and the filter screen on the chamber pressure of the thruster[J]. Missiles and space vehicles, 2023(4): 31-37.
[14] 马桂龙, 付青, 陈淑华. 基于自适应预测算法的光伏系统MPPT技术研究[J]. 太阳能学报, 2012, 33(12): 2062-2067.
MA G L, FU Q, CHEN S H.Research on maximum power point tracking based on adaptive predictive algorithm[J]. Acta energiae solaris sinica, 2012, 33(12): 2062-2067.

基金

国家自然科学基金项目资助(U1804149)

PDF(1898 KB)

Accesses

Citation

Detail

段落导航
相关文章

/