基于模态加速度法,在FAST软件中开发了海上风力机地震载荷计算模型,实现了风-浪-地震联合作用下风力机一体化耦合仿真,计算了不同环境工况下IEA 22 MW单桩海上风力机动力学响应,定量分析了地震激励对风轮载荷、塔顶振动和支撑结构载荷的影响程度,结果表明地震会显著增大机舱振动加速度,最高可达7.7倍,对塔顶位移极限值影响较小,但会增大塔顶侧向位移变化,且由于缺乏气动阻尼耗散,振动幅度衰减速度较慢;与低容量海上风力机不同,地震载荷对22 MW单桩风力机桩基载荷几乎无影响,进行基础初步设计时可忽略地震载荷的作用。
Abstract
Based on the modal acceleration method, a calculation model for seismic loads of offshore wind turbines was developed in the FAST software. The integrated coupling simulation of wind turbines under the combined action of wind, waves and earthquakes was realized, and the dynamic mechanical responses of IEA 22 MW single-pile offshore wind turbines under different environmental conditions were calculated. The influence degree of seismic excitation on wind turbine load, tower top vibration and support structure load was quantitatively analyzed. The results show that earthquakes can significantly increase the vibration acceleration of the nacelle by up to 7.7 times, have a relatively small impact on the displacement limit value at the top of the tower, but increase the lateral displacement change at the top of the tower. Moreover, due to the lack of aerodynamic damping dissipation, the attenuation rate of the vibration amplitude is relatively slow. Earthquake loadings have insignificant influence on the mudline bending moments of the 22 MW wind turbine support structure, which is completely different from lower-capacity wind turbines. It implies that the earthquake excitation can be ignored in the early stage of the support structure design.
关键词
海上风力机 /
地震影响 /
动力学响应 /
风-地震耦合
Key words
offshore wind turbines /
earthquake effects /
dynamic response /
wind-earthquake coupling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YANG Y, YE K H, LI C, et al.Dynamic behavior of wind turbines influenced by aerodynamic damping and earthquake intensity[J]. Wind energy, 2018, 21(5): 303-319.
[2] 杨阳, 岳敏楠, 李春, 等. 风力机地震动力学研究现状综述[J]. 热能动力工程, 2019, 34(9): 14-23, 56.
YANG Y, YUE M N, LI C, et al.A review on the state-of-the-art of seismic analysis of wind turbines[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 14-23, 56.
[3] 陈俊岭, 王大伟, 冯又全. 钢-混凝土组合式风力发电塔架地震响应分析[J]. 太阳能学报, 2022, 43(3): 396-404.
CHEN J L, WANG D W, FENG Y Q.Seismic response analysis of steel-concrete hybrid wind turbine tower[J]. Acta energiae solaris sinica, 2022, 43(3): 396-404.
[4] 闫阳天, 李春, 张万福, 等. 极限环境载荷诱导风力机结构振动影响分析[J]. 太阳能学报, 2022, 43(4): 393-401.
YAN Y T, LI C, ZHANG W F, et al.Analysis of vibration influence of wind turbine structure induced by ultimate environmental load[J]. Acta energiae solaris sinica, 2022, 43(4): 393-401.
[5] 张天翼, 李昕, 王文华. 地震、风、浪作用下融合海水养殖的海上风力机耦合响应机理研究[J]. 太阳能学报, 2022, 43(10): 243-251.
ZHANG T Y, LI X, WANG W H.Research of coupling mechanismes of offshore wind turbine integrated with mariculture under earthquake, wind and wave loads[J]. Acta energiae solaris sinica, 2022, 43(10): 243-251.
[6] 柳英洲, 王文华, 李昕, 等. 考虑桩基础柔性的地震风浪作用下海上风力机结构耦合响应机理研究[J]. 太阳能学报, 2023, 44(3): 67-76.
LIU Y Z, WANG W H, LI X, et al.Research of coupling mechanisms of offshore wind turbines with pile foundation flexibilities under earthquake, wind and wave load[J]. Acta energiae solaris sinica, 2023, 44(3): 67-76.
[7] YANG Y, LI C, BASHIR M, et al.Investigation on the sensitivity of flexible foundation models of an offshore wind turbine under earthquake loadings[J]. Engineering structures, 2019, 183: 756-769.
[8] YANG Y, BASHIR M, LI C, et al.Analysis of seismic behaviour of an offshore wind turbine with a flexible foundation[J]. Ocean engineering, 2019, 178: 215-228.
[9] 牛凯伦, 闫阳天, 李春, 等. 地震诱导紧急停机状态下近海风力机动力特性研究[J]. 机械强度, 2023, 45(2): 438-446.
NIU K L, YAN Y T, LI C, et al.Research on the dynamic characteristics of offshore wind turbines under seismic induced emergency shutdown[J]. Journal of mechanical strength, 2023, 45(2): 438-446.
[10] 牛凯伦, 闫阳天, 李春, 等. 大型海上风力机地震冲击角动力学响应分析[J]. 太阳能学报, 2022, 43(11): 292-302.
NIU K L, YAN Y T, LI C, et al.Dynamic response analysis of seismic impact angle of large offshore wind turbine[J]. Acta energiae solaris sinica, 2022, 43(11): 292-302.
[11] 李志昊, 岳敏楠, 李春, 等. 基于三维地震作用下桩-土耦合效应近海超大型风力机动力学响应研究[J]. 振动与冲击, 2021, 40(21): 242-250.
LI Z H, YUE M N, LI C, et al.Dynamic response of offshore super-large scale wind turbine based on pile-soil coupled effect under 3-D earthquake[J]. Journal of vibration and shock, 2021, 40(21): 242-250.
[12] YANG Y, BASHIR M, LI C, et al.Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine[J]. Renewable energy, 2020, 157: 1171-1184.
[13] YAN Y T, YANG Y, BASHIR M, et al.Dynamic analysis of 10 MW offshore wind turbines with different support structures subjected to earthquake loadings[J]. Renewable energy, 2022, 193: 758-777.
[14] YAN Y T, LI C, LI Z H.Buckling analysis of a 10 MW offshore wind turbine subjected to wind-wave-earthquake loadings[J]. Ocean engineering, 2021, 236: 109452.
[15] ZHANG J, YUAN G K, ZHU S Y, et al.Seismic analysis of 10 MW offshore wind turbine with large-diameter monopile in consideration of seabed liquefaction[J]. Energies, 2022, 15(7): 2539.
[16] 余洁, 秦志豪, 杨阳, 等. 考虑SSI效应的下一代大型海上风力机抗震控制研究[J]. 振动与冲击, 2023, 42(23): 175-182.
YU J, QIN Z H, YANG Y, et al.Seismic control of next generation large offshore wind turbines considering SSI effect[J]. Journal of vibration and shock, 2023, 42(23): 175-182.
[17] 梅轩, 杨阳. 土-构耦合效应对15 MW风力机地震动态响应的影响[J]. 动力工程学报, 2022, 42(3): 269-275, 285.
MEI X, YANG Y.Effect of soil-structure interaction on seismic behaviors of 15 MW wind turbine[J]. Journal of Chinese Society of Power Engineering, 2022, 42(3): 269-275, 285.
[18] 梅轩, 杨阳. 地震载荷对15 MW海上风力机动态响应的影响[J]. 动力工程学报, 2022, 42(2): 150-155, 196.
MEI X, YANG Y.Effects of seismic load on dynamic response of a 15 MW offshore wind turbine[J]. Journal of Chinese Society of Power engineering, 2022, 42(2): 150-155, 196.
[19] YANG Y, BASHIR M, MICHAILIDES C, et al.Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines[J]. Renewable energy, 2020, 161: 606-625.
基金
国家自然科学基金(52301343); 浙江省自然科学基金(LQ23E090003); 中国博士后科学基金(2022M722960); 浙江省博士后科研择优资助项目(ZJ2022001)