考虑相似日选取与PVformer模型的短期光伏功率预测

李练兵, 代亮亮, 李新达, 杨鹏伟, 杨少波, 高国强

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 341-351.

PDF(2131 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2131 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 341-351. DOI: 10.19912/j.0254-0096.tynxb.2024-0552

考虑相似日选取与PVformer模型的短期光伏功率预测

  • 李练兵1, 代亮亮1, 李新达1, 杨鹏伟2, 杨少波3, 高国强1
作者信息 +

SHORT TERM PHOTOVOLTAIC POWER PREDICTION CONSIDER SIMILAR DAYS SELECTION AND PVFORMER MODEL

  • Li Lianbing1, Dai Liangliang1, Li Xinda1, Yang Pengwei2, Yang Shaobo3, Gao Guoqiang1
Author information +
文章历史 +

摘要

为提高光伏功率预测的准确性,提出一种基于混合蛙跳算法(SFLA)相似日选取和改进Transformer模型的短期光伏功率预测模型——PVformer模型。基于灰色关联度计算相似因子,基于SFLA优化综合相似因子,实现对光伏相似日的选取;PVformer模型基于卷积神经网络(CNN)对光伏数据进行特征获取并降低数据维度,基于双向门控循环单元(BiGRU)提取光伏数据时序特征并对数据进行位置嵌入,基于多头自相关注意力机制寻找序列间关系,并打破信息利用瓶颈。综合相似因子最大的历史日作为预测日的相似日,选择相关性较高的特征作为模型输入,构建历史特征向量和未来气象向量输入到PVformer模型中。对比实验结果显示,PVformer模型可提高日前光伏功率预测的精度,EMAPEEMAEEMSE分别达到1.526%、0.274 MW、0.134 MW2。最后通过消融实验证明模型改进的有效性和必要性,具有一定的实用价值。

Abstract

In order to improve the accuracy of PV power prediction, this paper proposes a short-term PV power prediction model PVformer model based on SFLA similar day selection and improved Transformer model. This article calculates similarity factors based on grey correlation degree, optimizes comprehensive similarity factors based on SFLA, and realizes the selection of photovoltaic similarity days. The PVformer model is based on CNN networks to obtain features from photovoltaic data and reduce data dimensions. The BiGRU network is used to extract temporal features from photovoltaic data and embed data positions. The multi-head autocorrelation attention mechanism is used to find inter sequence relationships and break the bottleneck of information utilization. This article selects the historical day with the highest comprehensive similarity factor as the similarity day for the predicted day, selects features with high correlation as the model input, constructs historical feature vectors and future meteorological vectors to input into the PVformer model. The results of the control experiments show that the PVformer model improves the accuracy of day-ahead PV power prediction,EMAPE,EMAE, and EMSE reach 1.526%, 0.274 MW, and 0.134 MW2, respectively. Finally, the effectiveness and necessity of model improvement are demonstrated through ablation experiments, which have certain practical value.

关键词

光伏发电 / 相似日选取 / 功率预测 / PVformer模型 / 多头自相关注意力机制

Key words

photovoltaic power generation / similar day selection / power prediction / PVformer model / multi-head autocorrelated attention mechanism

引用本文

导出引用
李练兵, 代亮亮, 李新达, 杨鹏伟, 杨少波, 高国强. 考虑相似日选取与PVformer模型的短期光伏功率预测[J]. 太阳能学报. 2025, 46(8): 341-351 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0552
Li Lianbing, Dai Liangliang, Li Xinda, Yang Pengwei, Yang Shaobo, Gao Guoqiang. SHORT TERM PHOTOVOLTAIC POWER PREDICTION CONSIDER SIMILAR DAYS SELECTION AND PVFORMER MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 341-351 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0552
中图分类号: TM615   

参考文献

[1] 董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951.
DONG C, WANG Z, BAI J Y, et al.Review of ultra-short-term forecasting methods for photovoltaic power generation[J]. High voltage engineering, 2023, 49(7): 2938-2951.
[2] YANG X D, XU C B, ZHANG Y B, et al.Real-time coordinated scheduling for ADNs with soft open points and charging stations[J]. IEEE transactions on power systems, 2021, 36(6): 5486-5499.
[3] 赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56(5): 193-202.
ZHAO Y S, LIN W F.Research on typical scenarios based on fusion density peak value and entropy weight method of Pearson’s correlation coefficient[J]. Electric power, 2023, 56(5): 193-202.
[4] 李滨, 陆明珍. 考虑实时气象耦合作用的地区电网短期负荷预测建模[J]. 电力系统自动化, 2020, 44(17): 60-68.
LI B, LU M Z.Short-term load forecasting modeling of regional power grid considering real-time meteorological coupling effect[J]. Automation of electric power systems, 2020, 44(17): 60-68.
[5] 向玲, 邓泽奇. 基于改进经验小波变换和最小二乘支持向量机的短期风速预测[J]. 太阳能学报, 2021, 42(2): 97-103.
XIANG L, DENG Z Q.Short-term wind speed forecasting based on improved empirical wavelet transform and least squares support vector machines[J]. Acta energiae solaris sinica, 2021, 42(2): 97-103.
[6] 孙莉, 李静, 李继云, 等. 基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究[J]. 太阳能学报, 2020, 41(8): 221-226.
SUN L, LI J, LI J Y, et al.Research on fault diagnosis of photovoltaic power station equipment based on sparse Bayesian extreme learning machine[J]. Acta energiae solaris sinica, 2020, 41(8): 221-226.
[7] 陈志宝, 丁杰, 周海, 等. 地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J]. 中国电机工程学报, 2015, 35(3): 561-567.
CHEN Z B, DING J, ZHOU H, et al.A model of very short-term photovoltaic power forecasting based on ground-based cloud images and RBF neural network[J]. Proceedings of the CSEE, 2015, 35(3): 561-567.
[8] 王晓霞, 俞敏, 冀明, 等. 基于气候相似性与SSA-CNN-LSTM的光伏功率组合预测[J]. 太阳能学报, 2023, 44(6): 275-283.
WANG X X, YU M, JI M, et al.Photovoltaic power combination forecasting based on climate similarity and SSA-CNN-LSTM[J]. Acta energiae solaris sinica, 2023, 44(6): 275-283.
[9] ZHOU H X, ZHANG Y J, YANG L F, et al.Short-term photovoltaic power forecasting based on stacking-SVM[C]//2018 9th International Conference on Information Technology in Medicine and Education (ITME), Hangzhou, China, 2018: 994-998.
[10] ZHOU H X, ZHANG Y J, YANG L F, et al.Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism[J]. IEEE access, 2019, 7: 78063-78074.
[11] 韩宇超, 同向前, 邓亚平. 基于概率密度估计与时序Transformer网络的风功率日前区间预测[J]. 中国电机工程学报, 2024, 44(23): 9285-9296.
HAN Y C, TONG X Q, DENG Y P.Probabilistic distribution estimation and temporal Transformer-based interval prediction in day-ahead wind power prediction[J]. Proceedings of the CSEE, 2024, 44(23): 9285-9296.
[12] 张倩, 蒙飞, 李涛, 等. 基于周期信息增强的Informer光伏发电功率预测[J]. 中国电力, 2023, 56(10): 186-193.
ZHANG Q, MENG F, LI T, et al.Informer photovoltaic power generation forecasting based on cycle information enhancement[J]. Electric power, 2023, 56(10): 186-193.
[13] BHINDER M, BABARIT A, GENTAZ L, et al.Effect of viscous forces on the performance of a surging wave energy converter[C]//22nd International Conference on Ocean, Offshore and Artic Engineering (ISOPE2012). 2012.
[14] 范杏蕊, 李元诚. 基于改进Autoformer模型的短期电力负荷预测[J]. 电力自动化设备, 2024, 44(4): 171-177.
FAN X R, LI Y C.Short-term power load forecasting based on improved Autoformer model[J]. Electric power automation equipment, 2024, 44(4): 171-177.
[15] WU H, XU J, WANG J, et al.Autoformer:decomposition transformers with auto-correlation for long-term series forecasting[J]. Advances in neural information processing systems, 2021, 34: 22419-22430.
[16] 骆钊, 吴谕侯, 朱家祥, 等. 基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测[J]. 电网技术, 2023, 47(9): 3527-3537.
LUO Z, WU Y H, ZHU J X, et al.Wind power forecasting based on multi-scale time series block auto-encoder Transformer neural network model[J]. Power system technology, 2023, 47(9): 3527-3537.
[17] WANG S X, SHI J R, YANG W, et al.High and low frequency wind power prediction based on Transformer and BiGRU-Attention[J]. Energy, 2024, 288: 129753.
[18] 董俊, 刘瑞, 束洪春, 等. 基于BIRCH聚类的L-Transformer分布式光伏短期发电功率预测[J]. 高电压技术, 2024, 50(9): 3883-3893.
DONG J, LIU R, SHU H C, et al.Short-term distributed photovoltaic power generation prediction based on BIRCH cluster ing and L-Transformer[J]. High voltage engineering, 2024, 50(9): 3883-3893.
[19] 刘世鹏, 宁德军, 马崛. 针对光伏发电功率预测的LSTformer模型[J]. 计算机工程与应用, 2024, 60(9): 317-325.
LIU S P, NING D J, MA J.LSTformer model for photovoltaic power prediction[J]. Computer engineering and applications, 2024, 60(9): 317-325.
[20] 滕陈源, 丁逸超, 张有兵, 等. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49(7): 2961-2971.
TENG C Y, DING Y C, ZHANG Y B, et al.Ultra-short-term photovoltaic power prediction based on VMD-Informer-BiLSTM model[J]. High voltage engineering, 2023, 49(7): 2961-2971.
[21] 陈颖鉴. 基于Transformer的时间序列预测方法研究[D]. 天津: 天津大学, 2021.
CHEN Y J.Research on time series prediction method based on Transformer[D]. Tianjin: Tianjin University, 2021.
[22] 方斯顿, 程浩忠, 宋越, 等. 考虑风电相关性的电力系统随机无功备用优化[J]. 电力自动化设备, 2015, 35(11): 32-38.
FANG S D, CHENG H Z, SONG Y, et al.Stochastic reactive power reserve optimization considering wind power correlation[J]. Electric power automation equipment, 2015, 35(11): 32-38.
[23] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[24] 董雪, 赵宏伟, 赵生校, 等. 基于SOM聚类和二次分解的BiGRU超短期光伏功率预测[J]. 太阳能学报, 2022, 43(11): 85-93.
DONG X, ZHAO H W, ZHAO S X, et al.Ultra-short-term forecasting method of photovoltaic power based on SOM clustering, secondary decomposition and BiGRU[J]. Acta energiae solaris sinica, 2022, 43(11): 85-93.

基金

河北省省级科技计划(20312102D)

PDF(2131 KB)

Accesses

Citation

Detail

段落导航
相关文章

/