一种光-储整合系统拓扑及协同控制策略设计

蒋建波, 惠学智, 刘飞, 赵恩铭, 罗伟铭, 丁画

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 359-368.

PDF(3775 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3775 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 359-368. DOI: 10.19912/j.0254-0096.tynxb.2024-0557

一种光-储整合系统拓扑及协同控制策略设计

  • 蒋建波1, 惠学智1, 刘飞2, 赵恩铭1, 罗伟铭1, 丁画3
作者信息 +

DESIGN OF A PHOTOVOLTAIC-STORAGE INTEGRATED SYSTEM TOPOLOGY AND COOPERATIVE CONTROL STRATEGY

  • Jiang Jianbo1, Hui Xuezhi1, Liu Fei2, Zhao Enming1, Luo Weiming1, Ding Hua3
Author information +
文章历史 +

摘要

为协调电力系统供需侧功率调度,平滑系统中的功率波动,提出一种基于电网侧功率调度的光-储整合系统拓扑架构及其控制策略。所提拓扑架构可实现相间与相内的功率均衡,进而实现光伏单元与储能单元之间的能量互补。其次,通过深度挖掘模块化变换器的控制自由度,结合典型的运行场景与控制需求,对整个系统的协同控制策略进行设计。所提光-储整合系统及其协同控制策略既可利用储能平抑光伏发电的功率波动,也可根据电网需求输出相应的功率,可增强系统的实用性。最后,通过实验验证了所提出的整合系统拓扑及其协同控制策略的有效性。

Abstract

In order to coordinate the power scheduling on the supply and demand side of the power system and to smooth the power fluctuations in the system, the paper proposes a topological architecture of a photovoltaic-storage integrated system based on grid-side power scheduling and its control strategy. The proposed topology can realize inter-phase and intra-phase power balancing, and then realize the energy complementarity between PV units and storage units. Secondly, the cooperative control strategy of the whole system is designed by exploring the control freedom of the modular converter and combining the typical operation scenarios and control requirements. The proposed photovoltaic-storage integrated system and its cooperative control strategy can not only utilize the energy storage to smooth the power fluctuation of photovoltaic power generation, but also output the corresponding power according to the grid demand, which enhances the practicality of the system. Finally, the effectiveness of the proposed integrated system topology and its cooperative control strategy is verified by experiments.

关键词

光伏发电 / 电力系统 / 储能 / 协同控制 / 功率均衡 / 功率调度

Key words

PV power generation / power system / energy storage / collaborative control / power balancing / power dispatch

引用本文

导出引用
蒋建波, 惠学智, 刘飞, 赵恩铭, 罗伟铭, 丁画. 一种光-储整合系统拓扑及协同控制策略设计[J]. 太阳能学报. 2025, 46(8): 359-368 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0557
Jiang Jianbo, Hui Xuezhi, Liu Fei, Zhao Enming, Luo Weiming, Ding Hua. DESIGN OF A PHOTOVOLTAIC-STORAGE INTEGRATED SYSTEM TOPOLOGY AND COOPERATIVE CONTROL STRATEGY[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 359-368 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0557
中图分类号: TM73   

参考文献

[1] WANG Y, GUO C H, DU C, et al.Carbon peak and carbon neutrality in China: goals, implementation path, and prospects[J]. China geology, 2021, 4(4): 720-746.
[2] 杨若朴. “双碳” 目标下构建新型电力系统的挑战与对策[J]. 中外能源, 2022, 27(7): 17-22.
YANG R P.Challenges and countermeasures for building a new power system under the goal of achieving carbon peaking and carbon neutrality[J]. Sino-global energy, 2022, 27(7): 17-22.
[3] AJITH K A, FERNANDES B G.Elimination of phase unbalance in cascaded multilevel converters for large-scale photovoltaic grid integration[C]//2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 2019: 1-5.
[4] 傅仕航, 赵恒阳, 石健将. 基于三端口模块级联型固态变压器的分布式太阳电池组的最大功率输出跟踪控制研究[J]. 太阳能学报, 2019, 40(11): 3086-3094.
FU S H, ZHAO H Y, SHI J J.Research on MPPT control method for distributed solar cells based on three-port modular cascaded solid-state transormer[J]. Acta energiae solaris sinica, 2019, 40(11): 3086-3094.
[5] 蔡旭, 李睿, 刘畅, 等. 高压直挂储能功率变换技术与世界首例应用[J]. 中国电机工程学报, 2020, 40(1): 200-211.
CAI X, LI R, LIU C, et al.Transformerless high-voltage power conversion system for battery energy storage system and the first demonstration application in world[J]. Proceedings of the CSEE, 2020, 40(1): 200-211.
[6] YU Y F, KONSTANTINOU G, TOWNSEND C D, et al.Delta-connected cascaded H-bridge multilevel converters for large-scale photovoltaic grid integration[J]. IEEE transactions on industrial electronics, 2017, 64(11): 8877-8886.
[7] YU Y F, KONSTANTINOU G, HREDZAK B, et al.Power balance optimization of cascaded H-bridge multilevel converters for large-scale photovoltaic integration[J]. IEEE transactions on power electronics, 2016, 31(2): 1108-1120.
[8] COSTA L F, BUTICCHI G, LISERRE M.Optimum design of a multiple-active-bridge DC-DC converter for smart transformer[J]. IEEE transactions on power electronics, 2018, 33(12): 10112-10121.
[9] COSTA L F, BUTICCHI G, LISERRE M.Quad-active-bridge DC-DC converter as cross-link for medium-voltage modular inverters[J]. IEEE transactions on industry applications, 2017, 53(2): 1243-1253.
[10] DANG X H, PAN S Z, PAN X C, et al.A modular three-phase photovoltaic inverter with elimination of phase unbalance and reduction of second harmonic voltage ripple[C]//IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Singapore, Singapore, 2020: 1186-1191.
[11] ILVES K, HARNEFORS L, NORRGA S, et al.Predictive sorting algorithm for modular multilevel converters minimizing the spread in the submodule capacitor voltages[J]. IEEE transactions on power electronics, 2015, 30(1): 440-449.
[12] BIFARETTI S, TARISCIOTTI L, WATSON A, et al.Distributed commutations pulse-width modulation technique for high-power AC/DC multi-level converters[J]. IET power electronics, 2012, 5(6): 909-919.
[13] JIANG J B, ZHAO E M, YANG L, et al.An AC voltage balancer and its improved modulation strategy for CHB based PV inverters[J]. IEEE open journal of power electronics, 2023, 4: 828-839.
[14] 安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44(12): 510-517.
AN Y, ZHENG S Y, SU R, et al.Research on two-layer optimization of wind-solar-water-storage multi energy complementary power generation system[J]. Acta energiae solaris sinica, 2023, 44(12): 510-517.
[15] YANG Z, HU J J, AI X, et al.Transactive energy supported economic operation for multi-energy complementary microgrids[J]. IEEE transactions on smart grid, 2021, 12(1): 4-17.
[16] PENG Z X, CHEN X D, YAO L M.Research status and future of hydro-related sustainable complementary multi-energy power generation[J]. Sustainable futures, 2021, 3: 100042.
[17] XU X, HU W H, CAO D, et al.Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system[J]. Renewable energy, 2020, 147: 1418-1431.
[18] 温春雪, 戴惟, 李建林, 等. 光储一体化并联系统优化控制设计分析[J]. 太阳能学报, 2021, 42(5): 150-159.
WEN C X, DAI W, LI J L, et al.Design and analysis for optimal control of integrated with photovoltaic and energy storage parallel system[J]. Acta energiae solaris sinica, 2021, 42(5): 150-159.
[19] 薛阳, 黄薪操, 席东翔, 等. 基于叠加频率的直流微电网改进下垂控制策略研究[J]. 太阳能学报, 2022, 43(9): 461-467.
XUE Y, HUANG X C, XI D X, et al.Research on improved droop control strategy of DC microgrid based on superimposed frequency[J]. Acta energiae solaris sinica, 2022, 43(9): 461-467.
[20] 黄崇鑫, 陈振宇, 邓松. 含储能双母线直流微电网电压和功率协调控制[J]. 电力系统保护与控制, 2023, 51(11): 141-149.
HUANG C X, CHEN Z Y, DENG S.Voltage-power coordinated control of a dual-bus DC microgrid with energy storage[J]. Power system protection and control, 2023, 51(11): 141-149.
[21] 安军, 乔雪婧, 王玉鹏. 考虑锁相环影响的多逆变器并联接入弱电网稳定性分析[J]. 电测与仪表, 2021, 58(8): 146-153.
AN J, QIAO X J, WANG Y P.Stability analysis of multi-inverter parallel access to weak power grid considering the influence of phase-locked loop[J]. Electrical measurement & instrumentation, 2021, 58(8): 146-153.
[22] 黄知超, 杨升振, 延红艳, 等. 基于dq坐标系有功无功电流解耦空间电压矢量的STATCOM控制方法[J]. 电测与仪表, 2012, 49(12): 32-36, 45.
HUANG Z C, YANG S Z, YAN H Y, et al.A control method for SVPWM-based STATCOM using active-reactive current decouple under dq coordinate system[J]. Electrical measurement & instrumentation, 2012, 49(12): 32-36, 45.

基金

国家自然科学基金(62065001); 云南省基础研究计划(202301AT070022; 202401AT070078)

PDF(3775 KB)

Accesses

Citation

Detail

段落导航
相关文章

/