水风互补系统超低频振荡分析及控制参数协同优化

张宇栋, 刘福锁, 汤凡, 吕亚洲, 李鑫, 梁晓斌

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 232-239.

PDF(1369 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1369 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 232-239. DOI: 10.19912/j.0254-0096.tynxb.2024-0558

水风互补系统超低频振荡分析及控制参数协同优化

  • 张宇栋1, 刘福锁2, 汤凡1, 吕亚洲2, 李鑫1, 梁晓斌1
作者信息 +

ANALYSIS OF ULTRA-LOW FREQUENCY OSCILLATIONS AND COLLABORATIVE OPTIMIZATION OF CONTROL PARAMETERS FOR HYDRO-WIND COMPLEMENTARY SYSTEM

  • Zhang Yudong1, Liu Fusuo2, Tang Fan1, Lyu Yazhou2, Li Xin1, Liang Xiaobin1
Author information +
文章历史 +

摘要

提出一种抑制水风互补系统超低频振荡的控制参数协同优化方法。首先,采用转矩分析法,研究水电机组调速系统控制参数影响超低频振荡的灵敏度。然后,基于水风互补系统模型,分析风电频率控制参数对水电机组阻尼的影响。进一步,构建水风互补系统控制参数协同优化模型,引入二阶振荡粒子群算法优化水电机组调速器PID参数及风电频率控制的PD参数。最后,以改进的4机11节点测试系统仿真模型为例,对所提参数协同优化进行分析、验证,仿真结果表明采用所提方法优化后的控制参数能够有效抑制水风互补系统超低频振荡。

Abstract

A coordinated optimization method of control parameters for hydro-wind complementary systems is proposed to suppress ultra-low-frequency oscillations. Firstly, the sensitivity of ultra-low-frequency oscillations to the control parameters of the hydro turbine governor is analyzed using the torque analysis method. Then, based on a hydro-wind complementary system model, the impact of wind power frequency control parameters on the damping of hydro units is investigated. Furthermore, a coordinated optimization model of control parameters is developed, the second-order oscillatory particle swarm optimization algorithm is introduced to optimize the PID parameters of the hydro turbine governor and the PD parameters of wind power frequency control. Finally, the proposed coordinated optimization approach is analyzed and validated using an improved four-machine, eleven-bus test system. Simulation results demonstrate that the optimized control parameters effectively suppress ultra-low-frequency oscillations in the hydro-wind complementary system.

关键词

电力系统 / 超低频振荡 / 参数优化 / 阻尼 / 水风互补系统

Key words

power system / ultra-low frequency oscillation / parameter optimization / damping / hydro-wind complementary system

引用本文

导出引用
张宇栋, 刘福锁, 汤凡, 吕亚洲, 李鑫, 梁晓斌. 水风互补系统超低频振荡分析及控制参数协同优化[J]. 太阳能学报. 2025, 46(4): 232-239 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0558
Zhang Yudong, Liu Fusuo, Tang Fan, Lyu Yazhou, Li Xin, Liang Xiaobin. ANALYSIS OF ULTRA-LOW FREQUENCY OSCILLATIONS AND COLLABORATIVE OPTIMIZATION OF CONTROL PARAMETERS FOR HYDRO-WIND COMPLEMENTARY SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 232-239 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0558
中图分类号: TM712   

参考文献

[1] 刘春晓, 张俊峰, 陈亦平, 等. 异步联网方式下云南电网超低频振荡的机理分析与仿真[J]. 南方电网技术, 2016, 10(7): 29-34.
LIU C X, ZHANG J F, CHEN Y P, et al.Mechanism analysis and simulation on ultra-low frequency oscillation of Yunnan power grid in asynchronous interconnection mode[J]. Southern power system technology, 2016, 10(7): 29-34.
[2] 贺静波, 张剑云, 李明节, 等. 直流孤岛系统调速器稳定问题的频域分析与控制方法[J]. 中国电机工程学报, 2013, 33(16): 137-143.
HE J B, ZHANG J Y, LI M J, et al.Frequency domain analysis and control for governor stability problem in islanded HVDC sending systems[J]. Proceedings of the CSEE, 2013, 33(16): 137-143.
[3] 王雅军, 程杨帆, 聂强, 等. 兼顾超低频振荡抑制和调频性能的自动发电控制参数优化[J]. 科学技术与工程, 2022, 22(34): 15163-15170.
WANG Y J, CHENG Y F, NIE Q, et al.Parameter optimization of automatic generation control (AGC) system considering ultra-low frequency oscillation suppression and the secondary frequency regulation performance[J]. Science technology and engineering, 2022, 22(34): 15163-15170.
[4] ZHANG G Z, ZHAO J B, HU W H, et al.Deep reinforcement learning enabled Bi-Level robust parameter optimization of hydropower-dominated systems for damping ultra-low frequency oscillation[J]. Journal of modern power systems and clean energy, 2023, 11(4): 1770-1783.
[5] 薛安成, 王嘉伟, 刘晓博, 等. 电力系统超低频频率振荡机理分析与抑制研究现状与展望[J]. 中国电机工程学报, 2021, 41(2): 553-567.
XUE A C, WANG J W, LIU X B, et al.Survey and prospect of ultra-low frequency oscillation mechanism analysis and suppression in power system[J]. Proceedings of the CSEE, 2021, 41(2): 553-567.
[6] 李莹, 富亚洲, 王官宏, 等. 电力系统超低频频率振荡分析及扰动源定位[J]. 电网技术, 2023, 47(5): 1770-1780.
LI Y, FU Y Z, WANG G H, et al.Ultra-low frequency oscillation analysis and location in power system[J]. Power system technology, 2023, 47(5): 1770-1780.
[7] 白凡, 王宝华. 光伏并网对低频振荡的影响与抑制[J]. 太阳能学报, 2020, 41(3): 255-261.
BAI F, WANG B H.Influence and suppression of grid-connected solar power plants on low frequency oscillation[J]. Acta energiae solaris sinica, 2020, 41(3): 255-261.
[8] 申建建, 王月, 程春田, 等. 水风光多能互补发电调度问题研究现状及展望[J]. 中国电机工程学报, 2022, 42(11): 3871-3885.
SHEN J J, WANG Y, CHENG C T, et al.Research status and prospect of generation scheduling for hydropower-wind-solar energy complementary system[J]. Proceedings of the CSEE, 2022, 42(11): 3871-3885.
[9] SUN L, ZHAO X W.Modelling and analysis of frequency-responsive wind turbine involved in power system ultra-low frequency oscillation[J]. IEEE transactions on sustainable energy, 2022, 13(2): 844-855.
[10] CHEN L, LU X M, MIN Y, et al.Optimization of governor parameters to prevent frequency oscillations in power systems[J]. IEEE transactions on power systems, 2018, 33(4): 4466-4474.
[11] 肖灿, 王德林, 李振鹏, 等. 抑制电力系统超低频振荡的水轮机调速器参数优化控制研究[J]. 电网技术, 2020, 44(6): 2135-2142.
XIAO C, WANG D L, LI Z P, et al.Research on parameter optimization control of turbine governor for suppressing ultra-low frequency oscillation in power systems[J]. Power system technology, 2020, 44(6): 2135-2142.
[12] 苏亚鹏, 刘天琪, 李保宏, 等. 超低频振荡机理分析及水轮机调速系统参数优化[J]. 电网技术, 2020, 44(3): 1008-1016.
SU Y P, LIU T Q, LI B H, et al.Mechanism analysis of ultra-low frequency oscillation and parameter optimization of hydro turbine governor[J]. Power system technology, 2020, 44(3): 1008-1016.
[13] 易建波, 张国洲, 张鹏, 等. 超低频振荡阻尼控制中的水轮机调速系统参数双层优化策略[J]. 电工技术学报, 2022, 37(5): 1219-1228.
YI J B, ZHANG G Z, ZHANG P, et al.Two-layer optimization strategy of hydraulic turbine governing system parameters in ultra-low frequency oscillation damping control[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1219-1228.
[14] 史华勃, 陈刚, 丁理杰, 等. 兼顾一次调频性能和超低频振荡抑制的水轮机调速器PID参数优化[J]. 电网技术, 2019, 43(1): 221-226.
SHI H B, CHEN G, DING L J, et al.PID parameter optimization of hydro turbine governor considering the primary frequency regulation performance and ultra-low frequency oscillation suppression[J]. Power system technology, 2019, 43(1): 221-226.
[15] 江崇熙, 周靖皓, 石鹏, 等. 考虑超低频振荡的水轮机调速器参数多目标鲁棒设计[J]. 电力系统自动化, 2019, 43(21): 125-131, 147.
JIANG C X, ZHOU J H, SHI P, et al.Multi-objective robust design of hydro-turbine governor parameter considering ultra-low frequency oscillation[J]. Automation of electric power systems, 2019, 43(21): 125-131, 147.
[16] 刘少博, 王德林, 马宁宁, 等. 水电机组引起的超低频振荡特性及抑制措施研究[J]. 中国电机工程学报, 2019, 39(18): 5354-5362.
LIU S B, WANG D L, MA N N, et al.Study on characteristics and suppressing countermeasures of ultra-low frequency oscillation caused by hydropower units[J]. Proceedings of the CSEE, 2019, 39(18): 5354-5362.
[17] ZHANG G Z, HU W H, CAO D, et al.Deep reinforcement learning-based approach for proportional resonance power system stabilizer to prevent ultra-low-frequency oscillations[J]. IEEE transactions on smart grid, 2020, 11(6): 5260-5272.
[18] 何廷一, 束洪春, 李胜男, 等. 风电参与调频对电力系统超低频振荡的影响分析[J]. 可再生能源, 2023, 41(8): 1113-1121.
HE T Y, SHU H C, LI S N, et al.Analysis of the influence of wind power participating in frequency regulation on the ultra-low frequency oscillation of power system[J]. Renewable energy resources, 2023, 41(8): 1113-1121.
[19] 朱晓荣, 陈玉伟, 张祥宇, 等. 含风电的区域电网功率振荡特性分析与综合控制[J]. 电测与仪表, 2017, 54(1): 33-38.
ZHU X R, CHEN Y W, ZHANG X Y, et al.Impact of wind turbine on power oscillation characteristic in region network and integrated control strategy[J]. Electrical measurement & instrumentation, 2017, 54(1): 33-38.
[20] 许寅, 王佳璇, 吴翔宇, 等. 水光互补发电系统超低频振荡抑制控制策略研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(12): 1248-1257.
XU Y, WANG J X, WU X Y, et al.Suppression control strategy of ultra-low frequency oscillation in hydro-PV complementary generation system[J]. Journal of Tianjin University (science and technology), 2021, 54(12): 1248-1257.
[21] 曹娜, 苏亚妮, 于群. 运行参数变化时双馈风电机组振荡机理及特性研究[J]. 太阳能学报, 2024, 45(3): 54-64.
CAO N, SU Y N, YU Q.Study on oscillation mechanism and features of doubly-fed wind turbines with operating parameters changings[J]. Acta energiae solaris sinica, 2024, 45(3): 54-64.
[22] 程珊珊, 王海鑫, 杨子豪, 等. 虚拟同步发电机对系统低频振荡的影响及抑制方法综述[J]. 太阳能学报, 2023, 44(8): 119-129.
CHENG S S, WANG H X, YANG Z H, et al.Overview of effect of virtual synchronous generators on low-frequency oscillation of power system and suppression methods[J]. Acta energiae solaris sinica, 2023, 44(8): 119-129.
[23] 蒋丽, 叶润舟, 梁昌勇, 等. 改进的二阶振荡粒子群算法[J]. 计算机工程与应用, 2019, 55(9): 130-138, 167.
JIANG L, YE R Z, LIANG C Y, et al.Improved second-order oscillatory particle swarm optimization[J]. Computer engineering and applications, 2019, 55(9): 130-138, 167.
[24] 海涛, 程沛源, 杨嘉芃, 等. 基于二阶振荡粒子群优化算法的最大功率跟踪[J]. 科学技术与工程, 2022, 22(26): 11402-11408.
HAI T, CHENG P Y, YANG J P, et al.Maximum power tracking based on second-order oscillatory particle swarm optimization[J]. Science technology and engineering, 2022, 22(26): 11402-11408.
[25] KUNDUR P.电力系统稳定与控制[M]. 影印版. 北京: 中国电力出版社, 2001.
KUNDUR P.Power system stability and control[M]. Beijing: China Electric Power Press, 2001.

基金

国家电网公司西南分部科技项目(SGSW0000DKJS2310035)

PDF(1369 KB)

Accesses

Citation

Detail

段落导航
相关文章

/