基于中空玻璃微珠和变密度多层绝热材料的液氢球罐复合隔热研究

樊想, 赵益达, 张国信, 党战伟, 李建仓, 白博峰

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 234-239.

PDF(3395 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3395 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 234-239. DOI: 10.19912/j.0254-0096.tynxb.2024-0561

基于中空玻璃微珠和变密度多层绝热材料的液氢球罐复合隔热研究

  • 樊想1, 赵益达1, 张国信2, 党战伟3, 李建仓3, 白博峰1
作者信息 +

RESEARCH ON COMPOSITE INSULATION OF LIQUID HYDROGEN SPHERICAL TANK BASED ON HOLLOW GLASS BEADS AND VARIABLE DENSITY MULTI-LAYER INSULATION MATERIALS

  • Fan Xiang1, Zhao Yida1, Zhang Guoxin2, Dang Zhanwei3, Li Jiancang3, Bai Bofeng1
Author information +
文章历史 +

摘要

液氢球罐隔热系统是实现低蒸发率及经济储存的关键。该文使用逐层模型研究了变密度多层绝热(VDMLI)和中空玻璃微珠(HGB)复合的隔热系统,设计了球罐夹层空间的支撑结构,并建立了球罐漏热量预测模型;对比了不同隔热设计下球罐日蒸发率,基于25 m3液氢球罐分析了夹层空间真空度、VDMLI总层数和层密度对球罐日蒸发率的影响,综合抽真空难度和隔热材料成本等因素设计了2000 m3液氢球罐的隔热系统。结果表明:2000 m3液氢球罐日蒸发率为0.042%,对比NASA同容积球罐日蒸发率降低了16%。

Abstract

The thermal insulation system of liquid hydrogen spherical tanks is the key to achieving low evaporation rate and economical storage. This paper uses “layer by layer” model to study the thermal insulation system composed of variable density multi-layer insulation (VDMLI) and hollow glass beads (HGB), design the support structure of the spherical tank enclosed space, and establish a prediction model for the heat leakage of the spherical tank. In this paper, daily evaporation rate of spherical tank under different insulation designs were compared. The effects of the vacuum degree of enclosed space, the total number of VDMLI layers and the layer density on the daily evaporation rate of the 25 m3 liquid spherical tank were analyzed. Thermal insulation system of the 2000 m3 liquid hydrogen spherical tank was designed based on construction quality, vacuuming difficulty, and cost of thermal insulation materials. The results show that the daily evaporation rate of a 2000 m3 liquid hydrogen spherical tank is 0.042%, which is 16% lower than that of a NASA spherical tank with the same volume.

关键词

液氢球罐 / 变密度多层绝热 / 中空玻璃微珠 / 逐层模型 / 超低日蒸发率

Key words

liquid hydrogen spherical storage tank / variable density multilayer insulation / hollow glass beads / layer by layer model / ultra-low daily evaporation rate

引用本文

导出引用
樊想, 赵益达, 张国信, 党战伟, 李建仓, 白博峰. 基于中空玻璃微珠和变密度多层绝热材料的液氢球罐复合隔热研究[J]. 太阳能学报. 2025, 46(8): 234-239 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0561
Fan Xiang, Zhao Yida, Zhang Guoxin, Dang Zhanwei, Li Jiancang, Bai Bofeng. RESEARCH ON COMPOSITE INSULATION OF LIQUID HYDROGEN SPHERICAL TANK BASED ON HOLLOW GLASS BEADS AND VARIABLE DENSITY MULTI-LAYER INSULATION MATERIALS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 234-239 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0561
中图分类号: TK91   

参考文献

[1] 王刚, 王会玲, 孟凡. 实施氢能产业标准体系建设开启氢能发展新征程[J]. 质量与认证, 2024(2): 27-29.
WANG G, WANG H L, MENG F.Implementing the construction of hydrogen energy industry standard system to initiate a new journey of hydrogen energy development[J]. China quality certification, 2024(2): 27-29.
[2] 张盛, 郑津洋, 戴剑锋, 等. 可再生能源大规模制氢及储氢系统研究进展[J]. 太阳能学报, 2024, 45(1): 457-465.
ZHANG S, ZHENG J Y, DAI J F, et al.Research progress on renewable energy system coupled with large-scale hydrogen production and storage[J]. Acta energiae solaris sinica, 2024, 45(1): 457-465.
[3] FESMIRE J, SWANGER A, JACOBSON J, et al.Energy efficient large-scale storage of liquid hydrogen[J]. IOP Conference Series: materials science and engineering, 2022, 1240(1): 012088.
[4] FESMIRE J E, TOMSIK T M, BONNER T, et al.Integrated heat exchanger design for a cryogenic storage tank[C]//Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC. Anchorage, Alaska, USA, 2014: 1365-1372.
[5] DENG B C, YANG S Q, XIE X J, et al.Study of the thermal performance of multilayer insulation used in cryogenic transfer lines[J]. Cryogenics, 2019, 100: 114-122.
[6] ZHENG J P, CHEN L B, CUI C, et al.Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation[J]. Applied thermal engineering, 2018, 130: 161-168.
[7] 王鑫, 陈叔平, 朱鸣. 液氢储运技术发展现状与展望[J]. 太阳能学报, 2024, 45(1): 500-514.
WANG X, CHEN S P, ZHU M.Development status and prospect of liquid hydrogen storage and transportation technology[J]. Acta energiae solaris sinica, 2024, 45(1): 500-514.
[8] RATNAKAR R R, GUPTA N, ZHANG K, et al.Hydrogen supply chain and challenges in large-scale LH2 storage and transportation[J]. International journal of hydrogen energy, 2021, 46(47): 24149-24168.
[9] ZHENG J P, CHEN L B, LIU X M, et al.Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage[J]. Renewable energy, 2020, 147: 824-832.
[10] HEDAYAT A.Analytical modeling of variable density multilayer insulation for cryogenic storage[C]//Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference-CEC. Madison, Wisconsin, USA, 2002: 1557-1564.
[11] HASTINGS L J, HEDAYAT A, BROWN T M.Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage[R]. Marshall space flight center, 2024.
[12] SCHOLTENS B E, FESMIRE J E, SASS J P, et al.Cryogenic thermal performance testing of bulk-fill and aerogel insulation materials[C]//Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC. Chattanooga, Tennessee, USA, 2008: 152-159.
[13] ALLEN M, BAUMGARTNER R, FESMIRE J, et al.Advances in microsphere insulation systems[C]//Advances in Cryogenic Engeineering: Transactions of the Cryogenic Engineering Conference-CEC. Anchorage, Alaska, USA, 2017.
[14] FESMIRE J E, SASS J P, NAGY Z, et al.Cost-efficient storage of cryogens[C]//Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC. Chattanooga, Tennessee, USA, 2008: 1383-1391.
[15] BAUMGARTNER R G, MYERS E A, FESMIRE J E, et al.Demonstration of microsphere insulation in cryogenic vessels[A]//AIP Conference Proceedings. American Institute of Physics, 2006, 823(1): 1351-1358.
[16] ZHENG J P, CHEN L B, WANG J, et al.Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank[J]. Energy conversion and management, 2019, 186: 526-534.
[17] MCINTOSH G.Layer by layer MLI calculation using a separated mode equation[J]. Advances in cryogenic engineering, 1998, 39: 1683-1690.
[18] 王补宣. 工程传热传质学-上册[M]. 2版. 北京: 科学出版社, 2015.
WANG B X.Engineering heat and mass transfer-Ⅰ[M]. 2nd ed. Beijing: Science Press, 2015.
[19] WANG P, JI L, YUAN J, et al.Modeling and optimization of composite thermal insulation system with HGMs and VDMLI for liquid hydrogen on orbit storage[J]. International journal of hydrogen energy, 2020, 45(11): 7088-7097.
[20] CUNNINGTON G, TIEN C.Apparent thermal conductivity of uncoated microsphere cryogenic insulation[J]. Advances in cryogenic engineering, 2010, 22: 263-271.
[21] GOLDSMITH A.Thermophysical properties of solid materials[R]. Wright Air Development Center, Air Research and Development Command, US Air Force, 1959: 876.
[22] 扬帆, 张超, 张博超, 等. 大型液氢储罐内罐材料研究与应用进展[J]. 太阳能学报, 2023, 44(10): 557-563.
YANG F, ZHANG C, ZHANG B C, et al.Research and application progress of inner tank materials for large liquid hydrogen storage tanks[J]. Acta energiae solaris sinica, 2023, 44(10): 557-563.

PDF(3395 KB)

Accesses

Citation

Detail

段落导航
相关文章

/