双槽结构对风力机S809翼型的减阻研究

吴宛洋, 李健, 钟兢军

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 55-64.

PDF(20849 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(20849 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 55-64. DOI: 10.19912/j.0254-0096.tynxb.2024-0562

双槽结构对风力机S809翼型的减阻研究

  • 吴宛洋, 李健, 钟兢军
作者信息 +

STUDY ON DRAG REDUCTION OF S809 AIRFOIL OF WIND TURBINE WITH DOUBLE-GROOVE STRUCTURE

  • Wu Wanyang, Li Jian, Zhong Jingjun
Author information +
文章历史 +

摘要

该文采用数值仿真计算方法,研究双槽结构的槽道位置、宽度和角度对风力机S809翼型气动性能的影响。结果表明,双槽结构的最优参数是前槽道位于50%弦长处,后槽道位于70%弦长处,槽道宽度为2.5%弦长,槽道角度为75°。其在攻角大于12°时可显著改善风力机S809翼型的气动性能,升阻比相对于基准翼型的最大增量为439.03%。

Abstract

As a kind of passive flow control technology, airfoil slotting is currently used in the field of wind turbines. The numerical simulation method was used to study the influence of the position, width and angle of the channel of the double-groove structure on the aerodynamic performance of the wind turbine S809 airfoil. The results show that the optimal structural parameters of the double-groove structure are as follows: the front channel is located at 50% of the chord length, the rear channel is located at 70% of the chord length, the width of the double-channel channel is 2.5% of the chord length, and the angle of the double-channel channel is 75°. It significantly improves the aerodynamic performance of the S809 airfoil at a high angle of attack (AOA>12°), with a maximum increase of 439.03% in the lift-to-drag ratio relative to the benchmark airfoil.

关键词

双槽结构 / 失速特性 / 流动控制 / 数值模拟 / 气动性能

Key words

double-groove structure / stall characteristics / flow control / numerical simulation / aerodynamics

引用本文

导出引用
吴宛洋, 李健, 钟兢军. 双槽结构对风力机S809翼型的减阻研究[J]. 太阳能学报. 2025, 46(8): 55-64 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0562
Wu Wanyang, Li Jian, Zhong Jingjun. STUDY ON DRAG REDUCTION OF S809 AIRFOIL OF WIND TURBINE WITH DOUBLE-GROOVE STRUCTURE[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 55-64 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0562
中图分类号: TK83   

参考文献

[1] 柯文亮, 张文武, 卢加兴, 等. 前缘结节对风力机气动性能影响的数值研究[J]. 太阳能学报, 2022, 43(7): 334-339.
KE W L, ZHANG W W, LU J X, et al.Numerical study on influence of leading edge tubercles on aerodynamic performance of wind turbines[J]. Acta energiae solaris sinica, 2022, 43(7): 334-339.
[2] AKHTER M Z, JAWAHAR H K, OMAR F K, et al.Performance characterization of a slotted wind turbine airfoil featuring passive blowing[J]. Energy reports, 2024, 11: 720-735.
[3] 刘永飞, 陈微圣, 孙晓晶. 三种流动控制方法对H型垂直轴风力机性能影响的对比分析[J]. 太阳能学报, 2024, 45(3): 105-115.
LIU Y F, CHENG W S, SUN X J.Comparative analysis of effectiveness of three different flow control strategies for performance enhancement of H-type vertical axis wind turbine[J]. Acta energiae solaris sinica, 2024, 45(3): 105-115.
[4] 王浩, 罗振兵, 邓雄, 等. 基于合成双射流的翼型阵风载荷减缓研究[J]. 航空学报, 2024, 45(16): 68-79.
WANG H, LUO Z B, DENG X, et al.Research on gust load reduction of airfoil based on synthetic dual jet[J]. Acta aeronautica et astronautica sinica, 2024, 45(16): 68-79.
[5] 孙志坤, 史志伟, 张伟麟, 等. 等离子体激励器对高速翼型升阻特性的影响[J]. 航空学报, 2022, 43(S2): 26-42.
SUN Z K, SHI Z W, ZHANG W L, et al.Effect of plasma actuator on lift-drag characteristics of high-speed airfoil[J]. Acta aeronautica et astronautica sinica, 2022, 43(S2): 26-42.
[6] 丁美希, 赵全亮, 马世伟, 等. 仿生微型扑翼飞行器的研究进展[J]. 兵器装备工程学报, 2023, 44(3): 1-11.
DING M X, ZHAO Q L, MA S W, et al.Research progress of bionic flapping wing micro-aircraft[J]. Journal of ordnance equipment engineering, 2023, 44(3): 1-11.
[7] ALGAN M, SEYHAN M, SARIOĞLU M. Effect of aero-shaped vortex generators on NACA 4415 airfoil[J]. Ocean engineering, 2024, 291: 116482.
[8] AKHTER M Z, OMAR F K, ELNAJJAR E.Aerodynamic and aeroacoustic characteristics of a bionic morphing flap[J]. Energy reports, 2023, 9: 310-315.
[9] MORÍÑIGO J A, ANAYA-RUÍZ P, BUSTOS A, et al. Unsteady RANS-based DMD analysis of airfoil NACA0015 with Gurney flap[J]. International journal of heat and fluid flow, 2023, 99: 109099.
[10] RYU S Y, CHEONG C, KIM J W, et al.Analysis of aerodynamic and aeroacoustic performances of axial flow fans with variable winglet curvature in chordwise direction[J]. Results in engineering, 2024, 21: 101857.
[11] BELAMADI R, DJEMILI A, ILINCA A, et al.Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades[J]. Journal of wind engineering and industrial aerodynamics, 2016, 151: 79-99.
[12] 杨科, 王会社, 徐建中, 等. 开缝式风力机静态失速特性的研究[J]. 工程热物理学报, 2008, 29(1): 32-35.
YANG K, WANG H S, XU J Z, et al.Stalling feature research of wind turbine with fin[J]. Journal of engineering thermophysics, 2008, 29(1): 32-35.
[13] BHAVSAR H, ROY S, NIYAS H.Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration[J]. Energy, 2023, 263: 125666.
[14] BEYHAGHI S, AMANO R S.A parametric study on leading-edge slots used on wind turbine airfoils at various angles of attack[J]. Journal of wind engineering and industrial aerodynamics, 2018, 175: 43-52.
[15] 杨光宇, 张扬, 胡澜翔, 等. 斜置槽道在翼型失速控制中的应用[J]. 北京航空航天大学学报, 2024, 50(8): 2601-2618.
YANG G Y, ZHANG Y, HU L X, et al.Application of inclined slot in airfoil stall control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2601-2618.
[16] 孙佳. 风力机翼型双圆弧缝隙及对气流控制效果的研究[D]. 北京: 华北电力大学, 2022.
SUN J.Research on double circular gap of wind turbine airfoil and its effect on airflow control[D]. Beijing: North China Electric Power University, 2022.
[17] 吴宛洋, 钟兢军. 用于风力发电机的鲨鱼鳃式叶片减阻结构、叶片及制造方法[P]. 中国: CN111577531A, 2020.
WU W Y, ZHONG J J.Shark gill blade drag reduction structure, blade and manufacturing method for wind turbine[P]. China: CN111577531A, 2020.
[18] HAND M, SIMMS D, FINGERSH L, et al.Unsteady aerodynamics experiment phase Ⅵ: wind tunnel test con gurations and available data campaigns[R]. National Renewable Energy Laboratory, 2013.
[19] 苏子昂, 孙晓晶. S809翼型环量控制的射流参数研究[J]. 太阳能学报, 2020, 41(7): 359-366.
SU Z A, SUN X J.Numerical study on effects of various parameters on aerodynamic characteristics of S809 airfoil with circulation flow control[J]. Acta energiae solaris sinica, 2020, 41(7): 359-366.
[20] 徐帅, 黄典贵. 前缘静止及振动微小圆柱对S809翼型气动性能的影响[J]. 热能动力工程, 2017, 32(8): 37-42, 146-147.
XU S, HUANG D G. Aerodynamic performance investigation of the S809 airfoil with steady and oscillating mini-cylinder installed on front of the leading edge[J]. Journal of engineering for thermal energy and power, 2017, 32(8): 37-42, 146-147.
[21] 吕文豪, 张智昊, 郝礼书, 等. 可调缝道构型对翼型气动特性的影响[J]. 空气动力学学报, 2024, 43(6): 76-87.
LYU W H, ZHANG Z H, HAO L S, et al.Influence of adjustable slot configuration on aerodynamic characteristics of airfoil[J]. Acta aerodynamica sinica, 2024, 43(6): 76-87.

基金

国家自然科学基金重点项目(52236005)

PDF(20849 KB)

Accesses

Citation

Detail

段落导航
相关文章

/