FATIGUE DAMAGE ASSESSMENT METHOD FOR TOWER BOLTS CONSIDERING WAKE AND YAW
Liu Mingxing1,2, Geng Rongrong3, Wang Jiaqing1,2, Long Kai3, Lu Feiyu3, Tao Tao4
Author information+
1. Datang Boiler and Pressure Vessel Inspection Center Co., Ltd., Hefei 230088, China; 2. China Datang Corporation Science and Technology General Research Institute Co., Ltd., East China Electric Power Test & Research Institute, Hefei 230088, China; 3. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; 4. China Southern Power Grid Electric Power Technology Co., Ltd., Guangzhou 510080, China
To correctly assess the influence of wake and yaw effects on the fatigue characteristics of the turbine, a fatigue evaluation approach using the fatigue damage calculated by time series load is proposed. The wind turbine tower bolts are taken as the research object. By comparing the radar diagrams of equivalent fatigue load and accumulated damage, and the feasibility and reasonableness of the proposed methodology are proved by analyzing the results. The proposed method is also applied to investigate the effects of various yaw angles,wind speeds and turbulence on the fatigue cumulative damage of the tower bolts while the corresponding rule of change is obtained.
Liu Mingxing, Geng Rongrong, Wang Jiaqing, Long Kai, Lu Feiyu, Tao Tao.
FATIGUE DAMAGE ASSESSMENT METHOD FOR TOWER BOLTS CONSIDERING WAKE AND YAW[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 65-70 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0567
中图分类号:
TH12
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GÖÇMEN T, VAN DER LAAN P, RÉTHORÉ P E, et al. Wind turbine wake models developed at the technical university of Denmark: a review[J]. Renewable and sustainable energy reviews, 2016, 60: 752-769. [2] WANG X B, CAI C, CAI S G, et al.A review of aerodynamic and wake characteristics of floating offshore wind turbines[J]. Renewable and sustainable energy reviews, 2023, 175: 113144. [3] KALDELLIS J K, TRIANTAFYLLOU P, STINIS P.Critical evaluation of Wind Turbines’ analytical wake models[J]. Renewable and sustainable energy reviews, 2021, 144: 110991. [4] GE M W, WU Y, LIU Y Q, et al.A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes[J]. Applied energy, 2019, 233: 975-984. [5] SHAKOOR R, HASSAN M Y, RAHEEM A, et al.Wake effect modeling: a review of wind farm layout optimization using Jensen’s model[J]. Renewable and sustainable energy reviews, 2016, 58: 1048-1059. [6] HOUCK D R.Review of wake management techniques for wind turbines[J]. Wind energy, 2022, 25(2): 195-220. [7] KIM S H, SHIN H K, JOO Y C, et al.A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm[J]. Renewable energy, 2015, 74: 536-543. [8] HE R Y, YANG H X, SUN S L, et al.A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control[J]. Applied energy, 2022, 326: 120013. [9] SUN J L, CHEN Z, YU H, et al.Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore wind turbines[J]. Renewable energy, 2022, 199: 71-86. [10] MENG H, LI L, ZHANG J H.A preliminary numerical study of the wake effects on the fatigue load for wind farm based on elastic actuator line model[J]. Renewable energy, 2020, 162: 788-801. [11] HE R Y, YANG H X, LU L.Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control[J]. Applied energy, 2023, 337: 120878. [12] LIU Z Q, LI Q M, ISHIHARA T, et al.Numerical simulations of fatigue loads on wind turbines operating in wakes[J]. Wind energy, 2020, 23(5): 1301-1316. [13] SHALER K, JONKMAN J, BARTER G E, et al.Loads assessment of a fixed-bottom offshore wind farm with wake steering[J]. Wind energy, 2022, 25(9): 1530-1554. [14] 王为辉, 李娅娜, 王春燕. 基于VDI2230—2003标准的动车组车钩联接螺栓强度分析[J]. 大连交通大学学报, 2015, 36(2): 22-25. WANG W H, LI Y N, WANG C Y.Strength analysis of EMU coupler joint bolts based on VDI 2230—2003[J]. Journal of Dalian Jiaotong University, 2015, 36(2): 22-25. [15] 龙凯, 贾娇, 肖介平. 基于Schmidt-Neuper算法塔筒螺栓疲劳强度研究[J]. 太阳能学报, 2014, 35(10): 1904-1910. LONG K, JIA J, XIAO J P.Study of bolt fatigue strength for tower of HAWT based on Schmidt-Neuper algorithm[J]. Acta energiae solaris sinica, 2014, 35(10): 1904-1910. [16] 龙凯, 毛晓娥, 刘雨菁. 大型水平轴风力机塔筒顶部焊缝强度研究[J]. 太阳能学报, 2015, 36(2): 376-381. LONG K, MAO X E, LIU Y J.Analysis on top tower weld strength of HAWTs[J]. Acta energiae solaris sinica, 2015, 36(2): 376-381. [17] WEIJTJENS W, STANG A, DEVRIENDT C, et al.Bolted ring flanges in offshore-wind support structures-in-situ validation of load-transfer behaviour[J]. Journal of constructional steel research, 2021, 176: 106361. [18] 龙凯, 丁文杰, 陈卓, 等. 塔筒法兰间隙对螺栓疲劳损伤的影响分析[J]. 太阳能学报, 2021, 42(12): 206-211. LONG K, DING W J, CHEN Z, et al.Effects analysis of flange gap on bolt fatigue damage for wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(12): 206-211. [19] GL Wind Guideline: guideline for the certification of wind turbines[S]. Hamburg: Germanischer Lloyd WindEnergie GmbH, 2010. [20] TAO T, LONG K, YANG T L, et al.Quantitative assessment on fatigue damage induced by wake effect and yaw misalignment for floating offshore wind turbines[J]. Ocean engineering, 2023, 288: 116004. [21] 陶涛, 龙凯, 刘永前, 等. 计及限功率工况的风电塔筒螺栓疲劳寿命预测方法[J]. 太阳能学报, 2021, 42(11): 359-366. TAO T, LONG K, LIU Y Q, et al.Fatigue life prediction of wind turbine tower bolts considering power curtailment conditions[J]. Acta energiae solaris sinica, 2021, 42(11): 359-366. [22] 龙凯, 丁文杰, 陈卓, 等. 考虑螺栓疲劳损伤约束的法兰轻量化设计方法[J]. 太阳能学报, 2021, 42(9): 326-331. LONG K, DING W J, CHEN Z, et al.Lightweight design method for tower flange subject to constraint on bolt fatigue damage[J]. Acta energiae solaris sinica, 2021, 42(9): 326-331. [23] SEIDEL M, STANG A, WEGENER F, et al.Full-scale validation of FE models for geometrically imperfect flange connections[J]. Journal of constructional steel research, 2021, 187: 106955. [24] LIN M, PORTÉ-AGEL F.Power production and blade fatigue of a wind turbine array subjected to active yaw control[J]. Energies, 2023, 16(6): 2542. [25] SHIBUYA K, UCHIDA T.Wake asymmetry of yaw state wind turbines induced by interference with wind towers[J]. Energy, 2023, 280: 128091.