基于YOLOv8的太阳电池缺陷检测

王宗良, 陆丽, 康小东, 阮晓鹏, 笪贤文

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 379-386.

PDF(3436 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3436 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 379-386. DOI: 10.19912/j.0254-0096.tynxb.2024-0572

基于YOLOv8的太阳电池缺陷检测

  • 王宗良, 陆丽, 康小东, 阮晓鹏, 笪贤文
作者信息 +

RESEARCH ON DEFECT DETECTION OF SOLAR CELLS WITH YOLOv8 ALGORITHM

  • Wang Zongliang, Lu Li, Kang Xiaodong, Ruan Xiaopeng, Da Xianwen
Author information +
文章历史 +

摘要

针对电致发光条件下太阳电池缺陷检测过程中缺陷尺度不一、背景噪声干扰严重的问题,提出一种基于YOLOv8的缺陷检测算法,以精确识别电池表面的缺陷。首先,采用感受野注意力卷积使模型动态调整感受野权重,减少图像信息的模糊和遗漏,提升对微小缺陷的检测效果;其次,引入坐标注意力机制,获取长宽方向信息,突出重点特征,减轻背景噪声干扰;最后,使用SIoU作为边界框损失函数,在预测框收敛过程中将向量角度纳入考量标准。实验结果表明:该算法在太阳电池缺陷检测数据集上mAP达到92.83%,相比于原始网络提高2.1%,误检、漏检的情况明显减少,能有效定位和识别太阳电池上的缺陷。

Abstract

Aiming at the problems of defect scale inconsistency and serious interference of background noise in the defect detection process of solar cells under electroluminescence conditions, a defect detection algorithm based on YOLOv8 is proposed to accurately identify the defects on the surface of the cells. Firstly, the sensing field attention convolution is used to make the model dynamically adjust the sensing field weights, reduce the blurring and omission of image information, and improve the detection effect of tiny defects. Secondly, the coordinate attention mechanism is introduced to obtain the aspect direction information, highlight the key features, and alleviate the interference of the background noise; finally, the SIoU is used as the bounding box loss function, and the vector angle is incorporated into the consideration criterion in the process of predicting the convergence of the box. The experimental results show that the algorithm achieves a mAP of 92.83% on the solar cell defect detection dataset, which is an improvement of 2.1% compared with the original network, and the cases of misdetection and omission are significantly reduced, which is able to effectively locate and identify the defects on solar cells.

关键词

深度学习 / 太阳电池 / 电致发光 / 卷积神经网络 / 目标检测

Key words

deep learning / solar cells / electroluminescence / convolutional neural networks / object detection

引用本文

导出引用
王宗良, 陆丽, 康小东, 阮晓鹏, 笪贤文. 基于YOLOv8的太阳电池缺陷检测[J]. 太阳能学报. 2025, 46(8): 379-386 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0572
Wang Zongliang, Lu Li, Kang Xiaodong, Ruan Xiaopeng, Da Xianwen. RESEARCH ON DEFECT DETECTION OF SOLAR CELLS WITH YOLOv8 ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 379-386 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0572
中图分类号: TM914.4    TP391.41   

参考文献

[1] 曹邵文, 周国庆, 蔡琦琳, 等. 太阳能电池综述: 材料、政策驱动机制及应用前景[J]. 复合材料学报, 2022, 39(5): 1847-1858.
CAO S W, ZHOU G Q, CAI Q L, et al.A review of solar cells: materials, policy-driven mechanisms and application prospects[J]. Acta materiae compositae sinica, 2022, 39(5): 1847-1858.
[2] 梁振群, 李垚垚, 孟宁, 等. 大面积钙钛矿太阳能电池制备方法综述[J]. 微纳电子与智能制造, 2023, 5(3): 53-62.
LIANG Z Q, LI Y Y, MENG N, et al.A review on the fabrication techniques of large-area perovskite solar cells[J]. Micro/nano electronics and intelligent manufacturing, 2023, 5(3): 53-62.
[3] 王银, 高瑞泽, 李茂环, 等. 基于YOLOv5 LiteX算法的光伏组件缺陷检测[J]. 太阳能学报, 2023, 44(9): 101-108.
WANG Y, GAO R Z, LI M H, et al.Photovoltaic modules defect detection based on YOLOv5 LiteX algorithm[J]. Acta energiae solaris sinica, 2023, 44(9): 101-108.
[4] DHIMISH M, HOLMES V, MEHRDADI B, et al.The impact of cracks on photovoltaic power performance[J]. Journal of science: advanced materials and devices, 2017, 2(2): 199-209.
[5] 高伟, 黄俊铭. 基于SSELM的光伏组件故障智能诊断方法[J]. 太阳能学报, 2021, 42(12): 465-470.
GAO W, HUANG J M.Intelligent fault diagnosis method of photovoltaic module via SSELM[J]. Acta energiae solaris sinica, 2021, 42(12): 465-470.
[6] 吴琼, 解玉文, 郎庆凯, 等. 光伏组件智能化故障检测综述[J]. 上海电力大学学报, 2023, 39(3): 252-257.
WU Q, XIE Y W, LANG Q K, et al.Review of intelligent fault detection of photovoltaic modules[J]. Journal of Shanghai University of Electric Power, 2023, 39(3): 252-257.
[7] 周颖, 王如意, 袁梓桐, 等. 一种高效双路径注意力太阳电池缺陷检测网络[J]. 太阳能学报, 2023, 44(4): 407-413.
ZHOU Y, WANG R Y, YUAN Z T, et al.An efficient dual-path attention solar cell defect detection network[J]. Acta energiae solaris sinica, 2023, 44(4): 407-413.
[8] 赵晓雨, 高林, 杨校李, 等. 融合注意力机制的YOLOv5光伏板电致发光图像缺陷检测算法[J]. 湖北民族大学学报(自然科学版), 2023, 41(1): 65-70.
ZHAO X Y, GAO L, YANG X L, et al.Algorithm of YOLOv5 fusing attention mechanism for defect detection of photovoltaic panel electroluminescent image[J]. Journal of Hubei Minzu University (natural science edition), 2023, 41(1): 65-70.
[9] ÖZER T, TÜRKMEN Ö. Low-cost AI-based solar panel detection drone design and implementation for solar power systems[J]. Robotic intelligence and automation, 2023, 43(6): 605-624.
[10] AHMED AL-DULAIMI A, TAHIR GUNESER M, ALI HAMEED A, et al. Automated classification of snow-covered solar panel surfaces based on deep learning approaches[J]. Computer modeling in engineering & sciences, 2023, 136(3): 2291-2319.
[11] 陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学精密工程, 2023, 31(12): 1804-1815.
CHEN Y F, LIAO F, HUANY X Y, et al.Multi-scale YOLOv5 for solar cell defect detection[J]. Optics and precision engineering, 2023, 31(12): 1804-1815.
[12] YU G Y, SU J P, LUO Y T, et al.Efficient detection method of deep-sea netting breakage based on attention and focusing on receptive-field spatial feature[J]. Signal, image and video processing, 2024, 18(2): 1205-1214.
[13] ZHANG F, WANG G C.Multi-branch selection fusion fine-grained classification algorithm based on coordinate attention localization[C]//2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), Macao, China, 2022: 105-111.
[14] MA Y H, YUAN G W, YUE K, et al.CJS-YOLOv5n: a high-performance detection model for cigarette appearance defects[J]. Mathematical biosciences and engineering, 2023, 20(10): 17886-17904.
[15] TERVEN J, CÓRDOVA-ESPARZA D M, ROMERO-GONZÁLEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine learning and knowledge extraction, 2023, 5(4): 1680-1716.
[16] SU B Y, ZHOU Z, CHEN H Y.PVEL-AD: a large-scale open-world dataset for photovoltaic cell anomaly detection[J]. IEEE transactions on industrial informatics, 2023, 19(1): 404-413.
[17] BOLYA D, FOLEY S, HAYS J, et al.TIDE: a general toolbox for identifying object detection errors[C]//Computer Vision-ECCV 2020, Cham: Springer International Publishing, 2020: 558-573.

基金

国家自然科学基金(42176194)

PDF(3436 KB)

Accesses

Citation

Detail

段落导航
相关文章

/