结合近海浅水环境下水深变化明显及动态缆抗载荷能力需求,提出一种漂浮式光伏汇集动态缆线型设计方法,基于悬链线方程建立缓波式动态缆线型模型,结合Orcaflex软件构建有限元模型设计动态缆线型初步方案,考虑浮体偏移情况,在满足约束条件下以缆长最短为优化目标,采用改进模拟退火算法对线型初步方案进行优化寻找全局最优解。结合某海域实际工程数据分析,分析在动态缆定长时首端连接角度对线型的影响,并利用Orcaflex软件验证优化后动态缆线型方案的可靠性与所提方法的可行性。
Abstract
The development of new energy sources, such as oceanic wind power and photovoltaic system, has led to an increasing demand for dynamic sea cables. For the shallow water environment with large tidal range, it is prone to excessive bending,seabed interference, floating body interference and other phenomena, and it is easy to occur tension failure at the remote location. Combining the obvious water depth variation in the nearshore shallow water environment and the load capacity requirements of dynamic cables, a design method for floating photovoltaic pooling dynamic cable type is proposed, based on the suspension chain line equation to establish a slow wave dynamic cable line model. Combining with Orcaflex software to build a finite element model to design the dynamic cable preliminary scheme, considering the float offset, under the constraints to meet the shortest length of the cable as the optimization objective, using an improved simulated annealing algorithm to find the full tidal range of the cable, the preliminary scheme of the cable is optimized using a modified simulated annealing algorithm to find the global optimal solution. Combining with the analysis of actual engineering data in a certain sea area, the influence of the connection angle of the first end on the shape of the dynamic cable are analyzed when the cable length is fixed. The reliability of the optimized dynamic cable shape scheme and the feasibility of the method in this paper are verified using software.
关键词
漂浮式光伏 /
动态缆 /
悬链线理论 /
缓波式线型 /
模拟退火算法 /
曲率半径
Key words
floating photovoltaics /
dynamic cable /
catenary theory /
lazy-wave type line shape /
simulated annealing algorithm /
critical current
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐普, 黎思亮, 宋启明, 等. 深水漂浮式光伏平台系泊结构动力响应分析[J]. 太阳能学报, 2023, 44(10): 156-164.
XU P, LI S L, SONG Q M, et al.Dynamic response analysis of mooring structure for deep-water floating photovoltaic platform[J]. Acta energiae solaris sinica, 2023, 44(10): 156-164.
[2] 郭军, 陈作钢, 肖福勤, 等. 光伏电站漂浮方阵波浪载荷数值分析研究[J]. 太阳能学报, 2021, 42(1): 1-6.
GUO J, CHEN Z G, XIAO F Q, et al.Numerical research on wave loads of floating photovoltalic power station[J]. Acta energiae solaris sinica, 2021, 42(1): 1-6.
[3] 施兴华, 孙哲, 张婧. 考虑连接件刚度影响的多浮体漂浮光伏方阵运动响应分析[J]. 太阳能学报, 2023, 44(8): 301-306.
SHI X H, SUN Z, ZHANG J.Kinematic response analysis of multi-body floating photovoltaic array considering stiffness of connecting parts[J]. Acta energiae solaris sinica, 2023, 44(8): 301-306.
[4] MAMATHA G, KULKARNI P S.Assessment of floating solar photovoltaic potential in India’s existing hydropower reservoirs[J]. Energy for sustainable development, 2022, 69: 64-76.
[5] OH J, JUNG D, KIM H, et al.A study on the simulation-based installation shape design method of steel lazy wave riser(SLWR) in ultra deepwater depth[J]. Ocean engineering, 2020, 197: 106902.
[6] 赵宇. 深水缓波型柔性立管响应特性及疲劳寿命研究[D]. 天津: 天津大学, 2021.
ZHAO Y.Study on response characteristics and fatigue life of slow-wave flexible riser in deep water[D]. Tianjin: Tianjin University, 2021.
[7] 俞国军, 王孟义, 丰如男, 等. 浅水缓波型和缓S型动态缆动力响应分析[J]. 船舶与海洋工程, 2021, 37(5): 28-34.
YU G J, WANG M Y, FENG R N, et al.Dynamic response analysis of shallow water lazy-wave and lazy-S dynamic cables[J]. Naval architecture and ocean engineering, 2021, 37(5): 28-34.
[8] YAN J, ZHANG Y, SU Q, et al.Time series prediction based on LSTM neural network for top tension response of umbilical cables[J]. Marine structures, 2023, 91: 103448.
[9] 余杨, 刘成, 余建星, 等. 基于遗传算法的缓波型立管多目标集成优化[J]. 海洋工程, 2023, 41(2): 31-41.
YU Y, LIU C, YU J X, et al.Multi-objective integrated optimization of steel lazy wave riser based on genetic algorithm[J]. The ocean engineering, 2023, 41(2): 31-41.
[10] 邹科, 袁振钦, 刘刚, 等. 基于模拟退火的动态缆线型优化[J]. 高压电器, 2022, 58(1): 18-23, 30.
ZOU K, YUAN Z Q, LIU G, et al.Dynamic cable configuration optimization based on simulated annealing[J]. High voltage apparatus, 2022, 58(1): 18-23, 30.
[11] ZHAO S L, CHENG Y Q, CHEN P F, et al.A comparison of two dynamic power cable configurations for a floating offshore wind turbine in shallow water[J]. AIP advances, 2021, 11(3): 035302.
[12] RUAN W D, SHI J C, SUN B, et al.Study on fatigue damage optimization mechanism of deepwater lazy wave risers based on multiple waveform serial arrangement[J]. Ocean engineering, 2021, 228: 108926.
[13] 贾尚儒. 柔性立管优化设计及干涉可靠性研究[D]. 天津: 天津大学, 2021.
JIA S R.Study on optimal design and interference reliability of flexible riser[D]. Tianjin: Tianjin University, 2021.
[14] 樊耀华, 杨志勋, 王刚, 等. 海洋柔性管缆整体线型静态快速设计方法[J]. 哈尔滨工程大学学报, 2023, 44(9): 1622-1630.
FAN Y H, YANG Z X, WANG G, et al.Static rapid design method for configurations of flexible pipe cable[J]. Journal of Harbin Engineering University, 2023, 44(9): 1622-1630.
[15] 陈金龙. 海洋柔性立管线型基本设计方法研究[D]. 大连: 大连理工大学, 2018.
CHEN J L.Research on the preliminary design method of flexible marine riser configurations[D]. Dalian: Dalian University of Technology, 2018.
[16] BIN AHMAD I, SCHNEPF A, ONG M C.An optimisation methodology for suspended inter-array power cable configurations between two floating offshore wind turbines[J]. Ocean engineering, 2023, 278: 114406.
[17] 刘浩晨, 国振, 王立忠, 等. 漂浮式水上光伏电站锚泊系统设计方法[J]. 太阳能学报, 2019, 40(12): 3485-3492.
LIU H C, GUO Z, WANG L Z, et al.Design method for mooring system of floating photovoltaic system[J]. Acta energiae solaris sinica, 2019, 40(12): 3485-3492.
[18] YANG Z X, YAN J, SÆVIK S, et al. Integrated optimisation design of a dynamic umbilical based on an approximate model[J]. Marine structures, 2021, 78: 102995.
[19] SCHNEPF A, LOPEZ-PAVON C, ONG M C, et al.Feasibility study on suspended inter-array power cables between two spar-type offshore wind turbines[J]. Ocean engineering, 2023, 277: 114215.
[20] BEIER D, ONG M C, JANOCHA M J, et al.Application of suspended inter-array power cables in floating offshore wind farms[J]. Applied ocean research, 2024, 147: 103991.
基金
国家重点研发计划(2022YFB4200703)