基于谐波消除和谱峭度的风电机组主轴承故障诊断

陈强, 钱洵

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 1-8.

PDF(2242 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2242 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 1-8. DOI: 10.19912/j.0254-0096.tynxb.2024-0582

基于谐波消除和谱峭度的风电机组主轴承故障诊断

  • 陈强, 钱洵
作者信息 +

FAULT DIAGNOSIS OF WIND TURBINE MAIN BEARINGS BASED ON HARMONIC REMOVAL AND SPECTRAL KURTOSIS

  • Chen Qiang, Qian Xun
Author information +
文章历史 +

摘要

针对风电机组状态监测中主轴轴承故障特征受到其他传动部件振动谐波干扰且原始振动信号非平稳难以准确提取故障冲击特征频率的问题,提出一种基于谐波干扰消除和谱峭度相结合的分析方法(HR-Fast-Kurtogram)。利用离线角域重采样将非平稳时域信号转换成平稳的角度-阶次信号,在阶次域通过梳状陷波器其去除齿箱啮合成分等干扰阶次,应用基于短时傅里叶变换(STFT)的快速谱峭度图提取峭度峰值所在故障子频带从而提取轴承故障特征。既可避免非周期性冲击的干扰,亦可区分冲击性较小的非轴承幅值调制成分和轴承故障冲击成分。在实际机组轴承故障数据应用中的对比分析结果表明:新方法可提高在秒级短时间尺度提取轴承故障特征和识别故障类型的准确性。

Abstract

Aiming at the problems that the fault features of the main bearings are interfered by the harmonics of other transmission components in wind turbines' condition monitoring and the raw vibration signal is non-stationary, making it difficult to accurately extract the characteristic frequency of fault impacts, a combined method of harmonic removal and spectral kurtosis analysis (HR-Fast-Kurtogram) is proposed. Offline angle domain resampling is used to convert non-stationary time domain signals into stationary angle-order signals. Comb notch filters are introduced in the order domain to remove gear meshing frequencies, and Fast-Kurtogram based on short-time Fourier transfer (STFT) is applied to extract the fault sub-bands where the kurtosis peak is located in order to extract bearing fault features. The combined method is able to avoid the interference of non-periodic impacts and distinguish between non-bearing amplitude modulation components with lower impact and bearing fault impact components. The comparative analysis results in the application of real main bearing fault data shows that the proposed method can improve the accuracy of fault features extraction and fault type identification in a short time scale of seconds.

关键词

风电机组 / 轴承 / 状态监测 / 陷波器 / 谱峭度

Key words

wind turbines / bearings / condition monitoring / notch filters / spectral kurtosis

引用本文

导出引用
陈强, 钱洵. 基于谐波消除和谱峭度的风电机组主轴承故障诊断[J]. 太阳能学报. 2025, 46(1): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0582
Chen Qiang, Qian Xun. FAULT DIAGNOSIS OF WIND TURBINE MAIN BEARINGS BASED ON HARMONIC REMOVAL AND SPECTRAL KURTOSIS[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 1-8 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0582
中图分类号: TH165+.3   

参考文献

[1] 苏连成, 李兴林, 李小俚, 等. 风电机组轴承的状态监测和故障诊断与运行维护[J]. 轴承, 2012(1): 47-53.
SU L C, LI X L, LI X L, et al.Condition monitoring and fault diagnosis and operating maintenance systems for wind turbine bearings[J]. Bearing, 2012(1): 47-53.
[2] 安学利, 蒋东翔, 刘超, 等. 基于固有时间尺度分解的风电机组轴承故障特征提取[J]. 电力系统自动化, 2012, 36(5): 41-44, 102.
AN X L, JIANG D X, LIU C, et al.Bearing fault feature extraction of wind turbine based on intrinsic time-scale decomposition[J]. Automation of electric power systems, 2012, 36(5): 41-44, 102.
[3] 赵洪山, 李浪, 王颖. 一种基于盲源分离和流形学习的风电机组轴承故障特征提取方法[J]. 太阳能学报, 2016, 37(2): 269-275.
ZHAO H S, LI L, WANG Y.Fault feature extraction method of wind turbine bearing based on blind source separation and manifold learning[J]. Acta energiae solaris sinica, 2016, 37(2): 269-275.
[4] 孟良, 苏元浩, 许同乐, 等. 并行卷积神经网络的风电机组故障诊断方法[J]. 太阳能学报, 2023, 44(5): 449-456.
MENG L, SU Y H, XU T L, et al.Wind turbine fault diagnosis method based on parallel convolutional neural network[J]. Acta energiae solaris sinica, 2023, 44(5): 449-456.
[5] 彭进, 王维庆, 王海云, 等. 基于EEMD峭度-相关系数准则的多特征量风电机组轴承故障诊断[J]. 可再生能源, 2016, 34(10): 1481-1490.
PENG J, WANG W Q, WANG H Y, et al.Fault diagnosis method of wind turbine's bearing based on EEMD kurtosis-correlation coefficients criterion and multiple features[J]. Renewable energy resources, 2016, 34(10): 1481-1490.
[6] 刘洋, 程强, 史曜炜, 等. 基于注意力模块及1D-CNN的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(3): 462-468.
LIU Y, CHENG Q, SHI Y W, et al.Fault diagnosis of rolling bearings based on attention module and 1D-CNN[J]. Acta energiae solaris sinica, 2022, 43(3): 462-468.
[7] 胡超, 沈宝国, 谢中敏. 基于EMD-FastICA与DGA-ELM网络的轴承故障诊断方法[J]. 太阳能学报, 2021, 42(10): 208-219.
HU C, SHEN B G, XIE Z M.Fault diagnosis method of bearing based on EMD-FastICA and DGA-ELM network[J]. Acta energiae solaris sinica, 2021, 42(10): 208-219.
[8] DWYER R.Detection of non-Gaussian signals by frequency domain Kurtosis estimation[C]//ICASSP'83. IEEE International Conference on Acoustics, Speech, and Signal Processing. Boston, MASS, USA, 1983.
[9] ANTONI J.Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical systems and signal processing, 2007, 21(1): 108-124.
[10] 张龙, 毛志德, 杨世锡, 等. 基于包络谱带通峭度的改进谱峭度方法及在轴承诊断中的应用[J]. 振动与冲击, 2018, 37(23): 171-179.
ZHANG L, MAO Z D, YANG S X, et al.An improved Kurtogram based on band-pass envelope spectral Kurtosis with its application in bearing fault diagnosis[J]. Journal of vibration and shock, 2018, 37(23): 171-179.
[11] 代士超, 郭瑜, 伍星, 等. 基于子频带谱峭度平均的快速谱峭度图算法改进[J]. 振动与冲击, 2015, 34(7): 98-102, 108.
DAI S C, GUO Y, WU X, et al.Improvement on fast kurtogram algorithm based on sub-frequency-band spectral kurtosis average[J]. Journal of vibration and shock, 2015, 34(7): 98-102, 108.
[12] ANTONI J.The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical systems and signal processing, 2006, 20(2): 282-307.

PDF(2242 KB)

Accesses

Citation

Detail

段落导航
相关文章

/