针对海上风电安装平台桩靴基础,建立考虑土体循环弱化的桩靴-土体耦合有限元模型,通过与离心机模型试验对比,证明其在模拟桩靴基础循环特性方面的可靠性,并针对工程尺度的四腿安装平台进行一系列的循环加载分析。研究结果表明,单个桩靴基础在水平循环加载下,表层桩周土体和桩靴周围球形带处发生土体弱化,产生累积竖向沉降;四腿平台在水平荷载作用下主要失效模式为受压桩腿竖向沉降过大,双向水平循环加载下受压桩累积沉降大于单向加载情况,当循环幅值大于55%静承载力时,随着循环次数增加,平台倾斜率不断增加,影响风电安装平台在位作业安全性,最终受压桩竖向沉降过大,平台失效。
Abstract
Spudcan foundation-soil coupled finite element models considering cyclic weakening effect of soil is established for offshore wind turbine installation platform. By comparing with centrifuge model tests, the reliability of numerical methods in simulating spudcan foundations under cyclic loading is demonstrated, and a series of engineering-scale numerical models are established. The research results indicate that when mono-spudcan foundation is subjected to horizontal cyclic loading, soil weakening occurs in shallow soil around the pile and spherical band of the spudcan, resulting in cumulative vertical settlement. When horizontal lateral loads are applied on the four-leg platforms, the main failure mode is excessive vertical settlement of compressed pile legs. Under bi-directional cyclic loading, accumulated settlement of compressed piles is greater than that under uni-directional loading. When the cyclic amplitude exceeds 55% of the static bearing capacity, the platform inclination continuously increases with increasing cycle numbers, affecting the safety of offshore wind turbine installation platform. Eventually, the vertical settlement of the compressed piles becomes too large, and the platform fails.
关键词
风电安装平台 /
循环荷载 /
承载力 /
累积沉降 /
桩靴基础
Key words
wind power installation platform /
cyclic loads /
bearing capacity /
accumulative settlement /
spudcan foundation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曹政, 李智, 江琦, 等. 复合加载下海上风电四筒基础地基承载力特性研究[J]. 太阳能学报, 2024, 45(1): 210-217.
CAO Z, LI Z, JIANG Q, et al.Bearing capacity characteristics of four-bucket foundation in offshore wind turbines under combined loading conditions[J]. Acta energiae solaris sinica, 2024, 45(1): 210-217.
[2] 张海亚, 郑晨. 海上风电安装船的发展趋势研究[J]. 船舶工程, 2016, 38(1): 1-7.
ZHANG H Y, ZHENG C.Developing trend analysis of wind turbine installation vessel[J]. Ship engineering, 2016, 38(1): 1-7.
[3] HU P, XIAO Z, LEO C, et al.Advances in the prediction of spudcan punch-through in double-layered soils[J]. Marine structures, 2021, 79: 103038.
[4] 乐丛欢, 胡灏, 王昕, 等. 砂土中桩靴插桩对临近筒型基础的影响研究[J]. 太阳能学报, 2024, 45(2): 95-101.
LE C H, HU H, WANG X, et al.Study on influence of spudcan penetration pile on adjacent bucket foundation in sandy soil[J]. Acta energiae solaris sinica, 2024, 45(2): 95-101.
[5] 焦钰祺, 贺林林, 梁越, 等. 考虑结构性黏土应变软化效应的桩靴竖向承载特性研究[J]. 岩土力学, 2022, 43(5): 1374-1382.
JIAO Y Q, HE L L, LIANG Y, et al.Study of vertical bearing capacity of spudcan foundations considering strain-softening effect of structured clay[J]. Rock and soil mechanics, 2022, 43(5): 1374-1382.
[6] ZHANG Y H, BIENEN B, CASSIDY M J, et al.The undrained bearing capacity of a spudcan foundation under combined loading in soft clay[J]. Marine structures, 2011, 24(4): 459-477.
[7] VLAHOS G.Physical and numerical modelling of a three-legged jack-up structure on clay soil[D]. Crawley, Australia: University of Western Australia, 2004.
[8] LI Y P, YANG Y, YI J T, et al.Causes of post-installation penetration of jack-up spudcan foundations in clays[J]. PLoS One, 2018, 13(11): e0206626.
[9] EINAV I, RANDOLPH M.Effect of strain rate on mobilised strength and thickness of curved shear bands[J]. Géotechnique, 2006, 56(7): 501-504.
[10] YANG Y.Spudcan fixity under combined cyclic loading[D]. Singapore: National University of Singapore, 2014.
基金
国家自然科学基金(62273060); 湖北省教育厅科学研究计划(D20211302)