考虑机组电压下垂特性的大型光伏电站分布式电压优化控制策略

程强, 李海啸, 包诗媛, 杨伟, 刘利娟, 张路

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 411-422.

PDF(2363 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2363 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 411-422. DOI: 10.19912/j.0254-0096.tynxb.2024-0598

考虑机组电压下垂特性的大型光伏电站分布式电压优化控制策略

  • 程强, 李海啸, 包诗媛, 杨伟, 刘利娟, 张路
作者信息 +

DISTRIBUTED VOLTAGE OPTIMIZATION CONTROL STRATEGY FOR LARGE SCALE PHOTOVOLTAIC POWER STATIONS CONSIDERING UNIT VOLTAGE DROOP CHARACTERISTICS

  • Cheng Qiang, Li Haixiao, Bao Shiyuan, Yang Wei, Liu Lijuan, Zhang Lu
Author information +
文章历史 +

摘要

考虑到传统的集中式控制面临着通信负担较大的问题,提出一种分布式电压优化控制策略。在电压控制优化模型的构建上,考虑机组电压下垂特性的影响,将分段线性化的有功/无功-电压(P/Q-V)下垂曲线转变为一组混合整数线性约束,嵌入电压控制优化模型中。在电压控制优化模型的求解上,对传统交替方向乘子法进行改进,使其具有“并行更新”和“异步通信”能力,以提升分布式优化效率。最后通过算例分析,验证所提控制策略的适用性。

Abstract

Fluctuations in photovoltaic output can easily cause the system voltage to exceed the limit, so that effective voltage optimization control is required. Considering that traditional centralized control faces the problem of heavy communication burden, a distributed voltage optimization control strategy is proposed. In the construction of the voltage control optimization model, the influence of the unit voltage droop characteristics is considered, and the piecewise linearized P/Q-V droop curve is transformed into a set of mixed integer linear constraints to embed in the voltage control optimization model. In solving the voltage control optimization model, the traditional alternating direction multiplier method is improved to have "parallel update" and "asynchronous communication" capabilities to improve the efficiency of distributed optimization. Finally, the applicability of the proposed control strategy is verified by case analysis.

关键词

光伏发电 / 电压控制 / 并行算法 / 交替方向乘子法 / 异步通信

Key words

photovoltaic power / voltage control / parallel algorithms / alternating direction multiplier method / asynchronous communication

引用本文

导出引用
程强, 李海啸, 包诗媛, 杨伟, 刘利娟, 张路. 考虑机组电压下垂特性的大型光伏电站分布式电压优化控制策略[J]. 太阳能学报. 2025, 46(8): 411-422 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0598
Cheng Qiang, Li Haixiao, Bao Shiyuan, Yang Wei, Liu Lijuan, Zhang Lu. DISTRIBUTED VOLTAGE OPTIMIZATION CONTROL STRATEGY FOR LARGE SCALE PHOTOVOLTAIC POWER STATIONS CONSIDERING UNIT VOLTAGE DROOP CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 411-422 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0598
中图分类号: TM615   

参考文献

[1] 司俊龙, 艾琳, 邱辰. 2023年中国光伏发电发展现状与展望[J]. 水力发电, 2024, 50(11): 1-4.
SI J L, AI L, QIU C.Status and prospect of china's photovoltaic power development in 2023[J]. Water power, 2024, 50(11): 1-4.
[2] 矫勇. “双碳”目标下大力推进水风光储一体化发展的现状与对策建议[J]. 中国水利, 2025(4): 1-6.
JIAO Y.Current status and recommendations of promoting integrated development of water, wind, solar and storage energy under the "dual carbon" goal[J]. Chinese water resources, 2025(4): 1-6.
[3] 盛四清, 樊茂森, 张文朝, 等. 高新能源占比系统的低频减载优化方法[J]. 太阳能学报, 2021, 42(2): 365-369.
SHENG S Q, FAN M S, ZHANG W C, et al.Optimization method of under frequency load shedding for high new energy proportion system[J]. Acta energiae solaris sinica, 2021, 42(2): 365-369.
[4] 王蒙, 张文朝, 汪莹, 等. 高比例光伏接入的电力系统暂态过电压控制策略[J]. 太阳能学报, 2023, 44(10): 148-155.
WANG M, ZHANG W C, WANG Y, et al.Transient overvoltage control strategy of power system considering high proportion photovoltaic access[J]. Acta energiae solaris sinica, 2023, 44(10): 148-155.
[5] 李桐, 韩学山. 时变追踪并网光伏电站最大输出功率的无功优化方法[J]. 电工技术学报, 2023, 38(11): 2921-2931.
LI T, HAN X S.Reactive power optimization for time-varying tracking of maximum output power of grid-connected photovoltaic power station[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2921-2931.
[6] NOWAK S, WANG L W, METCALFE M S.Two-level centralized and local voltage control in distribution systems mitigating effects of highly intermittent renewable generation[J]. International journal of electrical power & energy systems, 2020, 119: 105858.
[7] MOLZAHN D K, DÖRFLER F, SANDBERG H, et al. A survey of distributed optimization and control algorithms for electric power systems[J]. IEEE transactions on smart grid, 2017, 8(6): 2941-2962.
[8] 孙胜博, 饶尧, 郭威, 等. 基于改进ADMM的含分布式光伏的配电网电压无功优化方法[J]. 太阳能学报, 2024, 45(3): 506-516.
SUN S B, RAO Y, GUO W, et al.Volt/var optimization method of distribution network with distributed photovoltaic based on improved ADMM[J]. Acta energiae solaris sinica, 2024, 45(3): 506-516.
[9] 汤茂东, 曲小慧, 姚若玉, 等. 基于离散一致性算法的直流配电网多光伏协调控制策略[J]. 电力系统自动化, 2020, 44(24): 89-95.
TANG M D, QU X H, YAO R Y, et al.Multi-photovoltaic coordinated control strategy in DC distribution network based on discrete consensus algorithm[J]. Automation of electric power systems, 2020, 44(24): 89-95.
[10] LI H X, GUO K, HAO G F, et al.Decentralized communication based two-tier volt-var control strategy for large-scale centralized photovoltaic power plant[J]. IEEE transactions on sustainable energy, 2022, 13(1): 592-606.
[11] 边晓燕, 孙明琦, 赵健, 等. 基于一致性算法的源-荷协同分布式优化调控策略[J]. 中国电机工程学报, 2021, 41(4): 1334-1347, 1540.
BIAN X Y, SUN M Q, ZHAO J, et al.Distributed coordinative optimal dispatch and control of source and load based on consensus algorithm[J]. Proceedings of the CSEE, 2021, 41(4): 1334-1347, 1540.
[12] BOYD S.Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and trends® in machine learning, 2010, 3(1): 1-122.
[13] DENG W, LAI M J, PENG Z M, et al.Parallel multi-block ADMM with o(1/k) convergence[J]. Journal of scientific computing, 2017, 71(2): 712-736.
[14] ZHANG R, KWOK J.Asynchronous distributed ADMM for consensus optimization[C]//International Conference on Machine Learning, JMLR, 2014: 1701-1709.
[15] 郑浩, 谢丽蓉, 叶林, 等. 考虑光伏双评价指标的混合储能平滑出力波动策略[J]. 电工技术学报, 2021, 36(9): 1805-1817.
ZHENG H, XIE L R, YE L, et al.Hybrid energy storage smoothing output fluctuation strategy considering photovoltaic dual evaluation indicators[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1805-1817.
[16] 朱星旭, 韩学山, 杨明, 等. 含分布式光伏与储能配电网时变最优潮流追踪的分布式算法[J]. 中国电机工程学报, 2019, 39(9): 2644-2658.
ZHU X X, HAN X S, YANG M, et al.A distributed algorithm for time-varying optimal power flow tracking in distribution networks with photovoltaics and energy storage[J]. Proceedings of the CSEE, 2019, 39(9): 2644-2658.
[17] INAOLAJI A, SAVASCI A, PAUDYAL S.Distribution grid optimal power flow in unbalanced multiphase networks with volt-VAr and volt-watt droop settings of smart inverters[J]. IEEE transactions on industry applications, 2022, 58(5): 5832-5843.
[18] DU J Q, TIAN J, WU Z, et al.An interval power flow method based on linearized DistFlow equations for radial distribution systems[C]//2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Nanjing, China, 2020: 1-5.
[19] HUANG S, WU Q W, GUO Y F, et al.Distributed voltage control based on ADMM for large-scale wind farm cluster connected to VSC-HVDC[J]. IEEE transactions on sustainable energy, 2020, 11(2): 584-594.
[20] LI H X, LEKIĆ A, LI S, et al.Distribution network reconfiguration considering the impacts of local renewable generation and external power grid[J]. IEEE transactions on industry applications, 2023, 59(6): 7771-7788.
[21] YANG Y, JIA Q S, XU Z B, et al.Proximal ADMM for nonconvex and nonsmooth optimization[J]. Automatica, 2022, 146: 110551.
[22] XU J J, SUN H J.ADMM-based coordinated decentralized voltage control meets practical communication systems[C]//2017 IEEE International Conference on Communications Workshops(ICC Workshops). Paris, France, 2017: 906-910.

基金

重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0997); 重庆市教委科学技术研究项目(KJQN202201103); 重庆理工大学科研启动基金(2021ZDZ013)

PDF(2363 KB)

Accesses

Citation

Detail

段落导航
相关文章

/