以聚二甲基硅氧烷(PDMS)为材料,采用一种简易的表面织构方法制备具有微结构表面的PDMS薄膜,再通过表面修饰及优化,最终获得具有理想光谱选择性且表面超疏水的PDMS(SH-PDMS)薄膜。该薄膜在8~13 μm的“大气窗口”波段平均发射率接近97.0%,在300~1100 nm区间的平均太阳光透过率也高达94.8%,是一种理想的光伏表层辐射制冷膜。将SH-PDMS薄膜应用于商业光伏的表层封装时,可观察到光伏表层表现出优异的疏水性及自清洁效果;同时户外日间测试结果显示,表层具有SH-PDMS薄膜的光伏组件比原始组件温度降低1.0~1.5 ℃;相比平滑封装的光伏表面,以SH-PDMS薄膜作为光伏表层还可减少光反射,提升组件的光电输出。
Abstract
This study presents a simple approach for fabricating polydimethylsiloxane (PDMS) films featuring textured surfaces. And the textured surface was chemically modified and optimized, which makes it with ideal spectral selectivity and a superhydrophobic surface. Testing results show that the superhydrophobic PDMS (SH-PDMS) film displays an average emissivity of approximately 97.0% within the "atmospheric window" band (8-13 μm), along with an average solar transmittance of up to 94.8% in the range of 300-1100 nm. Consequently, the SH-PDMS film holds potential as an effective radiative cooling layer for photovoltaic (PV) panels. Application of this film to commercial photovoltaic panels demonstrates superhydrophobicity and self-cleaning properties on the panel surface. Furthermore, outdoor daytime testing results indicate a temperature reduction of 1.0-1.5 ℃ for PV panels featuring the SH-PDMS film compared to those with original glass surfaces. Additionally, the PV panels with SH-PDMS film exhibits reduced light reflection and improves photoelectric output relative to smooth photovoltaic surfaces.
关键词
辐射制冷 /
超疏水 /
光伏 /
表面织构 /
光谱选择性 /
大气窗口
Key words
radiative cooling /
superhydrophobicity /
photovoltaics /
surface texturing /
spectral selectivity /
atmospheric window
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TAGUCHI M.Review—development history of high efficiency silicon heterojunction solar cell: from discovery to practical use[J]. ECS journal of solid state science and technology, 2021, 10(2): 025002.
[2] ZHAO B, HU M K, AO X Z, et al.Radiative cooling: a review of fundamentals, materials, applications, and prospects[J]. Applied energy, 2019, 236: 489-513.
[3] 余才锐, 沈冬梅, 何伟, 等. 基于微通道热管和天空辐射制冷技术新型散热方式的试验研究[J]. 太阳能学报, 2020, 41(7): 251-258.
YU C R, SHEN D M, HE W, et al.Experimental study on novel heat dissipation based on sky radiative cooling and micro-channel heat pipe[J]. Acta energiae solaris sinica, 2020, 41(7): 251-258.
[4] FAN S H, LI W.Photonics and thermodynamics concepts in radiative cooling[J]. Nature photonics, 2022, 16: 182-190.
[5] LIANG J, WU J W, GUO J, et al. Radiative cooling for passive thermal management towards sustainable carbon neutrality[J]. National science review, 2023, 10(1): nwac208.
[6] RAMAN A P, ABOU ANOMA M, ZHU L X, et al.Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515: 540-544.
[7] GENTLE A R, SMITH G B.A subambient open roof surface under the mid-summer Sun[J]. Advanced science, 2015, 2(9): 1500119.
[8] ZHAI Y, MA Y G, DAVID S N, et al.Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066.
[9] YANG J N, GAO X D, WU Y Q, et al.Nanoporous silica microspheres-ploymethylpentene (TPX) hybrid films toward effective daytime radiative cooling[J]. Solar energy materials and solar cells, 2020, 206: 110301.
[10] 殷少有, 覃羽丰, 张宁. 辐射制冷膜的性能分析与优化设计[J]. 太阳能学报, 2021, 42(8): 231-234.
YIN S Y, QIN Y F, ZHANG N.Performance analysis and optimization design of radiation cooling film[J]. Acta energiae solaris sinica, 2021, 42(8): 231-234.
[11] JEONG S Y, TSO C Y, WONG Y M, et al.Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface[J]. Solar energy materials and solar cells, 2020, 206: 110296.
[12] ZHANG H W, LY K C S, LIU X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14657-14666.
[13] 黄珂, 张吉, 张卓奋, 等. 基于天空辐射冷却系统的光伏组件降温研究[J]. 太阳能学报, 2023, 44(2): 361-365.
HUANG K, ZHANG J, ZHANG Z F, et al.Cooling performance study of photovoltaic modules with sky radiative cooling systems[J]. Acta energiae solaris sinica, 2023, 44(2): 361-365.
[14] 陈诺, 赵斌, 敖显泽, 等. 一种基于PDMS材料的太阳能集热-辐射制冷光谱选择性表面的研究[J]. 太阳能学报, 2021, 42(12): 80-85.
CHEN N, ZHAO B, AO X Z, et al.Study of a PDMS material based spectrally selective surface for photothermal and radiative cooling[J]. Acta energiae solaris sinica, 2021, 42(12): 80-85.
[15] ZHAO B, HU M K, AO X Z, et al.Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module[J]. Solar energy, 2018, 176: 248-255.
[16] MA J, AI Y F, KANG L, et al.A novel nanocone cluster microstructure with anti-reflection and superhydrophobic properties for photovoltaic devices[J]. Nanoscale research letters, 2018, 13(1): 332.
基金
深圳市科技创新基础研究项目(JCYJ20190808111407284)