This paper presents a method for forecasting the remaining lifetime of PV modules based on the dynamic calibration of a nonlinear Wiener degradation model that takes into account random effects. Initially, a nonlinear Wiener degenerate model considering the stochasticity of the parameters is developed, and the model parameters are estimated by offline optimization and online updating. After that, based on the nonlinear degradation model to predict the PV module performance degradation state, then establish the degradation state prediction error model to compensate for the nonlinear model, and carry out parameter updating to get the calibrated degradation model, on the basis of which to predict the residual lifetime of PV module. Lastly, the validity and feasibility of the proposed method are proved by case analysis.
Chen Wei, Wu Yan, Pei Tingting, Shen Hongchi.
REMAINING LIFETIME PREDICTION OF PHOTOVOLTAIC MODULES BASED ON DYNAMIC CALIBRATION OF NONLINEAR DEGRADATION MODELS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 439-446 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0605
中图分类号:
TM615
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIAO L X, KÖTTIG F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction[J]. IEEE transactions on reliability, 2014, 63(1): 191-207. [2] KAAYA I, ASCENCIO-VÁSQUEZ J, WEISS K A, et al. Assessment of uncertainties and variations in PV modules degradation rates and lifetime predictions using physical models[J]. Solar energy, 2021, 218: 354-367. [3] KAAYA I, KOEHL M, MEHILLI A P, et al.Modeling outdoor service lifetime prediction of PV modules: effects of combined climatic stressors on PV module power degradation[J]. IEEE journal of photovoltaics, 2019, 9(4): 1105-1112. [4] LI Z Z, MA M Y, HAN T X, et al.A PV module life prediction method with flexible consideration of environmental stress coupling weights[C]//2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS). Guangzhou, China, 2023: 1868-1873. [5] WU L F, FU X H, GUAN Y.Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies[J]. Applied sciences, 2016, 6(6): 166. [6] 蔡忠义, 王泽洲, 项华春, 等. 基于退化建模的设备剩余寿命预测方法[M]. 北京: 国防工业出版社, 2022. CAI Z Y, WANG Z Z, XIANG H C, et al.Equipment remaining useful lifetime prediction method based on degradation modeling[M]. Beijing: National Defense Industry Press, 2022. [7] PARK S H, KIM J H.Application of gamma process model to estimate the lifetime of photovoltaic modules[J]. Solar energy, 2017, 147: 390-398. [8] 刘卫东, 文根, 鄢伟安, 等. 基于退化数据和非线性伽马过程的光伏组件现场寿命评估[J]. 计算机集成制造系统, 2021, 27(12): 3494-3502. LIU W D, WEN G, YAN W A, et al.Field lifetime assessment of photovoltaic modules based on degradation data-driven and nonlinear Gamma processes[J]. Computer integrated manufacturing systems, 2021, 27(12): 3494-3502. [9] 鄢伟安, 孔文琪, 刘卫东, 等. 具有初始退化随机特征的光伏组件可靠性评估[J]. 太阳能学报, 2022, 43(3): 152-157. YAN W A, KONG W Q, LIU W D, et al.Reliability assessment of photovoltaic modules with initial degradation random characteristics[J]. Acta energiae solaris sinica, 2022, 43(3): 152-157. [10] 唐圣学, 宋晓, 李明, 等. 光伏组件寿命衰退建模与寿命预测高斯随机过程回归方法研究[J]. 太阳能学报, 2022, 43(12): 41-49. TANG S X, SONG X, LI M, et al.Research on lifetime degradation modeling and Gaussian stochastic process regression method for life prediction of photovoltaic modules[J]. Acta energiae solaris sinica, 2022, 43(12): 41-49. [11] CHARKI A.Accelerated degradation testing of a photovoltaic module[J]. Journal of photonics for energy, 2013, 3(1): 033099. [12] 陈伟, 雷欢, 裴婷婷, 等. 基于退化轨迹和Wiener模型的光伏组件剩余寿命预测方法[J]. 太阳能学报, 2023, 44(7): 175-181. CHEN W, LEI H, PEI T T, et al.Remaining life prediction method of photovoltaic modules based on degradation trajectoryand Wiener model[J]. Acta energiae solaris sinica, 2023, 44(7): 175-181. [13] KAAYA I, WEISS K A.Physical and data-driven hybrid model for outdoor lifetime prediction of PV modules[C]//2020 47th IEEE Photovoltaic Specialists Conference (PVSC). Calgary, AB, Canada, 2020: 0460-0464. [14] LU S F, ZHANG W, ZHANG C, et al.A novel hybrid data-driven PV output prediction method based on error correction[C]//2023 8th International Conference on Power and Renewable Energy(ICPRE). Shanghai, China, 2023: 1819-1823. [15] ZHANG Z X, SI X S, HU C H, et al.Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods[J]. European journal of operational research, 2018, 271(3): 775-796. [16] LEE M T, WHITMORE G A.Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary[J]. Statistical science, 2006, 21(4): 501-S13. [17] JORDAN D C, KURTZ S R, VANSANT K, et al.Compendium of photovoltaic degradation rates[J]. Progress in photovoltaics: research and applications, 2016, 24(7): 978-989. [18] 裴洪, 胡昌华, 司小胜, 等. 融合寿命数据与退化数据的剩余寿命估计方法[J]. 电光与控制, 2016, 23(9): 90. PEI H, HU C H, SI X S, et al.Remaining useful lifetime estimation by combining lifetime data with degradation data[J]. Electronics optics & control, 2016, 23(9): 90. [19] SI X S, WANG W B, HU C H, et al.Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE transactions on reliability, 2012, 61(1): 50-67. [20] 任超, 李慧琴, 李天梅, 等. 基于退化模型动态校准的设备剩余寿命预测方法[J]. 航空学报, 2023, 44(19): 228345. REN C, LI H Q, LI T M, et al.Equipment remaining useful life prediction method with dynamic calibration of degradation model[J]. Acta aeronautica et astronautica sinica, 2023, 44(19): 228345. [21] WANG Z Q, HU C H, WANG W B, et al.An additive Wiener process-based prognostic model for hybrid deteriorating systems[J]. IEEE transactions on reliability, 2014, 63(1): 208-222.