以3.3 MW水平轴风力机为研究对象,采用外场实验的方法,利用机舱式激光雷达对青藏高原地区某一风电场来流风剪切及其对风力机性能影响进行分析研究。研究发现,在水平来流方向,高原地区风剪切具有一定的日变化特征,同时受风向、风速和温度的影响,且在不同时段它们对风剪切影响的程度不同;高温会使风剪切指数降低,实验风力机主要处于高风剪切指数区。通过对5种风剪切指数分析发现,各风剪切指数在不同风速区间对风力机功率、转速和转矩影响存在较大差异。当风速≤6 m/s时,高风剪切指数下的风力机输出功率、转速、转矩均较大;当风速>6 m/s时,低风剪切指数下的风力机输出功率、转矩均较高,而所有风剪切指数下的转速区分并不是很明显。
Abstract
The cabin LiDAR is used to analyze the incoming wind shear of a wind farm in Qinghai-Tibet Plateau and its influence on the on the performance of wind turbine by taking a 3.3 MW horizontal axis wind turbine as the research object and using the method of outfield experiment. Our research results indicate that in the horizontal incoming flow direction, wind shear in plateau areas has certain diurnal variation characteristics, and is simultaneously affected by wind direction, wind speed and temperature. Moreover, the degree of their influence on wind shear varies at different times. high temperature will reduce the wind shear index,and the experimental wind turbine mainly lies in the area of high wind shear index. Through the analysis of five wind shear indices, it is found that the influence of each wind shear index on the power, rotational speed and torque of wind turbines varies significantly in different wind speed ranges. Under the wind speed ≤6 m/s,the output power,rotational speed and torque of the wind turbine under high wind shear are larger than that of low wind shear. Under the wind speed > 6 m/s, the output power and torque of the wind turbine under low wind shear are higher than that of high wind shear,but the difference of rotational speed under all wind shear is not very obvious.
关键词
水平轴风力机 /
风场 /
激光雷达 /
风剪切 /
风力机性能
Key words
horizontal axis wind turbine /
wind farm /
lidar /
wind shear /
wind turbine performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱金阳, 丁伟. 平坦地形风剪切特性的研究[J]. 太阳能学报, 2023, 44(2): 167-171.
ZHU J Y, DING W.Research of wind shear characteristics in flat terrain[J]. Acta energiae solaris sinica, 2023, 44(2): 167-171.
[2] LI Z Y, PI J H, CAO Y, et al.A virtual dual-ripple suppression strategy of double fed wind turbine under wind shear[J]. Journal of solar energy engineering, 2023, 145(3): 031010.
[3] XU X L, LIU X L.Vibration signal processing and weak information extraction method for high-speed shaft fault of wind turbine in wind shear[J]. International journal of pattern recognition and artificial intelligence, 2020, 34(14): 2058020.
[4] 周春雷, 于瑞. 基于叶根载荷的风力发电机组风剪切强度分析[J]. 机械设计与研究, 2020, 36(4): 220-224.
ZHOU C L, YU R.Research on wind shear strength of wind turbine based on blade root load[J]. Machine design & research, 2020, 36(4): 220-224.
[5] JOOSS Y, HEARST R J, BRACCHI T.Influence of incoming turbulence and shear on the flow field and performance of a lab-scale roof-mounted vertical axis wind turbine[J]. 2023, 15(6): 063302.
[6] 陈子文, 王晓东, 郭翼泽, 等. 考虑风剪切的漂浮式风力机气动特性研究[J]. 工程热物理学报, 2021, 42(4): 905-914.
CHEN Z W, WANG X D, GUO Y Z, et al.Aerodynamic characteristics of floating wind turbine considering wind shear[J]. Journal of engineering thermophysics, 2021, 42(4): 905-914.
[7] KAVARI G, TAHANI M, MIRHOSSEINI M.Wind shear effect on aerodynamic performance and energy production of horizontal axis wind turbines with developing blade element momentum theory[J]. Journal of cleaner production, 2019, 219: 368-376.
[8] WAGNER R, COURTNEY M, GOTTSCHALL J, et al.Accounting for the speed shear in wind turbine power performance measurement[J]. Wind energy, 2011, 14(8): 993-1004.
[9] 王海鹏, 邱庆刚, 张博. 风剪切来流对风力机近尾迹流动特性影响[J]. 热科学与技术, 2017, 16(2): 120-126.
WANG H P, QIU Q G, ZHANG B.Effects of wind shear on near wake characteristics of wind turbine blade[J]. Journal of thermal science and technology, 2017, 16(2): 120-126.
[10] 张旭耀, 杨从新, 李寿图, 等. 风剪切来流下风力机流场特性与风轮气动载荷研究[J]. 太阳能学报, 2019, 40(11): 3281-3288.
ZHANG X Y, YANG C X, LI S T, et al.Study on flow field characteristics and aerodynamic loads of horizontal axis wind turbine in shear inflow[J]. Acta energiae solaris sinica, 2019, 40(11): 3281-3288.
[11] 侯亚丽, 汪建文, 王强, 等. 风切变对风力机尾流湍流特征影响的研究[J]. 机械工程学报, 2016, 52(16): 149-155.
HOU Y L, WANG J W, WANG Q, et al.Effect of wind shear on the wake turbulence characteristics of the wind turbine[J]. Journal of mechanical engineering, 2016, 52(16): 149-155.
[12] 许波峰, 朱紫璇, 戴成军, 等. 风剪切对风力机叶片气动性能及尾迹形状的影响[J]. 力学学报, 2021, 53(2): 362-372.
XU B F, ZHU Z X, DAI C J, et al.Influence of wind shear on aerodynamic characteristics and wake shape of wind turbine blades[J]. Chinese journal of theoretical and applied mechanics, 2021, 53(2): 362-372.
[13] 张宏洋, 盛会霞, 张玲. 风剪切对水平轴风力机气动性能影响的研究[J]. 东北电力大学学报, 2016, 36(2): 33-38.
ZHANG H Y, SHENG H X, ZHANG L.The studies of the influence of wind shear on wind turbine aerodynamic[J]. Journal of Northeast Dianli University, 2016, 36(2): 33-38.
[14] SEZER-UZOL N, UZOL O.Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor[J]. Wind energy, 2013, 16(1): 1-17.
[15] JEONG M S, KIM S W, LEE I, et al.Wake impacts on aerodynamic and aeroelastic behaviors of a horizontal axis wind turbine blade for sheared and turbulent flow conditions[J]. Journal of fluids and structures, 2014, 50: 66-78.
[16] 刘惠文, 郑源, 杨春霞, 等. 剪切来流条件下风力机尾流场特性实验研究[J]. 中国电机工程学报, 2018, 38(23): 6987-6993.
LIU H W, ZHENG Y, YANG C X, et al.An experimental investigation on the characteristics of wind turbine wake under incoming shear flow[J]. Proceedings of the CSEE, 2018, 38(23): 6987-6993.
[17] 杨从新, 王强, 李寿图, 等. 高原风力机与来流湍流的多尺度结构响应关系[J]. 西华大学学报(自然科学版), 2021, 40(5): 20-25.
YANG C X, WANG Q, LI S T, et al.Multi-scale structural response relationship between wind turbine and turbulent inflow over the plateau[J]. Journal of Xihua University (natural science edition), 2021, 40(5): 20-25.
[18] BARDAL L M, SÆTRAN L R, WANGSNESS E. Performance test of a 3 MW wind turbine-effects of shear and turbulence[J]. Energy procedia, 2015, 80: 83-91.
[19] 陈福东, 刘宇航, 李春, 等. 风剪切下风力机组俯仰控制策略研究[J]. 太阳能学报, 2021, 42(2): 56-60.
CHEN F D, LIU Y H, LI C, et al.Research of tilt control strategy for wind turbines under wind shear[J]. Acta energiae solaris sinica, 2021, 42(2): 56-60.
[20] 贾锋, 蔡旭, 李征, 等. 提高风电机组发电量的转矩-变桨协调控制策略[J]. 中国电机工程学报, 2017, 37(19): 5622-5632.
JIA F, CAI X, LI Z, et al.Torque-pitch coordinated control for improving the power production of wind energy conversion system[J]. Proceedings of the CSEE, 2017, 37(19): 5622-5632.
基金
国家自然科学基金(12062012); 甘肃省风力机研究专项基金(071904)