该文从电化学、热力学、流体动力学和电学的角度出发,构建质子交换膜(PEM)电解槽动态机理模型,表述PEM电解槽的非线性、动态特性和内部多物理过程的耦合。在此基础上,提出将纹波电流拆分为直流分量与交流分量的方法,旨在更加真实的反映电流纹波对制氢效率影响,建立PEM电解槽与电力电子电路结合的半实物仿真平台,对不同幅值与频率的纹波电流输入进行测试,半实物仿真结果与实验数据吻合,验证模型的准确性,为研究高效制氢电源变换器拓扑结果及其控制策略提供理论依据与验证平台。
Abstract
This paper constructs a dynamic mechanism model of the proton exchange membrance(PEM) electrolyzer from the perspectives of electrochemistry, thermodynamics, fluid dynamics, and electricity, describing the nonlinearity, dynamic characteristics, and coupling of internal multi-physical processes of PEM electrolyzer. Based on this, a method is proposed to split the ripple current into DC and AC components, aiming to more accurately reflect the impact of current ripple on hydrogen production efficiency. A hardware-in-the-loop simulation platform combining PEM electrolyzer and power electronic circuits is established, and ripple currents with different amplitudes and frequencies are tested. The hardware-in-the-loop simulation results are consistent with experimental data, verifying the accuracy of the model. This provides a theoretical basis and verification platform for studying the topology and control strategy of high-efficiency hydrogen production power converters.
关键词
电解水制氢 /
PEM电解槽 /
机理建模 /
制氢效率 /
半实物仿真
Key words
hydrogen production by water electrolysis /
PEM electrolyzer /
mechanism modeling /
hydrogen production efficiency /
hardware-in-the-loop simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ARSAD A Z, HANNAN M A, AL-SHETWI A Q, et al. Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions[J]. International journal of hydrogen energy, 2022, 47(39): 17285-17312.
[2] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on DC power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[3] KOJIMA H, NAGASAWA K, TODOROKI N, et al.Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production[J]. International journal of hydrogen energy, 2023, 48(12): 4572-4593.
[4] YU M L, WANG K, VREDENBURG H.Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen[J]. International journal of hydrogen energy, 2021, 46(41): 21261-21273.
[5] AYERS K.The potential of proton exchange membrane-based electrolysis technology[J]. Current opinion in electrochemistry, 2019, 18: 9-15.
[6] 李建林, 张则栋, 李光辉, 等. 基于模型层级分析的质子交换膜电解槽建模研究进展[J]. 高电压技术, 2023, 49(3): 1105-1117.
LI J L, ZHANG Z D, LI G H, et al.Research on modeling of proton exchange membrane electrolyzer based on model hierarchical analysis[J]. High voltage engineering, 2023, 49(3): 1105-1117.
[7] ATLAM O.An experimental and modelling study of a photovoltaic/proton-exchange membrane electrolyser system[J]. International journal of hydrogen energy, 2009, 34(16): 6589-6595.
[8] GUILBERT D, VITALE G.Dynamic emulation of a PEM electrolyzer by time constant based exponential model[J]. Energies, 2019, 12(4): 750.
[9] CHANDESRIS M, MÉDEAU V, GUILLET N, et al. Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density[J]. International journal of hydrogen energy, 2015, 40(3): 1353-1366.
[10] BIAKU C Y, DALE N V, MANN M D, et al.A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer[J]. International journal of hydrogen energy, 2008, 33(16): 4247-4254.
[11] ABDIN Z, WEBB C J, GRAY E M.Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell[J]. International journal of hydrogen energy, 2015, 40(39): 13243-13257.
[12] ULLEBERG Ø.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.
[13] BUITENDACH H P C, GOUWS R, MARTINSON C A, et al. Effect of a ripple current on the efficiency of a PEM electrolyser[J]. Results in engineering, 2021, 10: 100216.
[14] YIGIT T, SELAMET O F.Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system[J]. International journal of hydrogen energy, 2016, 41(32): 13901-13914.
[15] KOPONEN J, RUUSKANEN V, KOSONEN A, et al.Effect of converter topology on the specific energy consumption of alkaline water electrolyzers[J]. IEEE transactions on power electronics, 2019, 34(7): 6171-6182.
[16] CARMO M, FRITZ D L, MERGEL J, et al.A comprehensive review on PEM water electrolysis[J]. International journal of hydrogen energy, 2013, 38(12): 4901-4934.
[17] HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D. Investigation of PEM electrolyzer modeling: electrical domain, efficiency, and specific energy consumption[J]. International journal of hydrogen energy, 2020, 45(29): 14625-14639.
基金
国家重点研发计划(2021YFE0103800)