基于风光概率预测的可再生能源制氨系统容量优化配置方法

茆美琴, 陶伟鹏, 武继训, 汪海宁, 邹绍琨

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 644-655.

PDF(2218 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2218 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 644-655. DOI: 10.19912/j.0254-0096.tynxb.2024-0636

基于风光概率预测的可再生能源制氨系统容量优化配置方法

  • 茆美琴1, 陶伟鹏1, 武继训1, 汪海宁1, 邹绍琨2
作者信息 +

CAPACITY CONFIGURATION OPTIMIZATION FOR RENEWABLE POWER AMMONIA PROVDCTION SYSTEM BASED ON WIND AND SOLAR PROBABILITY PREDICTION

  • Mao Meiqin1, Tao Weipeng1, Wu Jixun1, Wang Haining1, Zou Shaokun2
Author information +
文章历史 +

摘要

面向GW级大规模RePtA系统,建立基于Copula理论的风光概率预测模型,并综合考虑安装地点、储能配置策略与运行策略对系统容量的优化配置的影响,提出可再生能源制氨(renewable power to ammonia,RePtA)系统双层优化配置模型。该模型以极小化单位氨成本为目标函数,优化配置风电系统、光伏系统、电解制氢系统、化学储能系统和储氢系统的容量,并采用遗传算法对优化模型进行求解。以GW级RePtA系统为例,定量分析和比较了5类典型安装地点配置不同储能的情况下对系统最优配置以及经济性的影响。

Abstract

In this paper, the wind and solar probability prediction models based on Copula theory are established, and a two-level capacity optimization configuration model of the main components for a GW-scale renewable power to ammonia(RePtA) systems is proposed comprehensively considering the impact of installation sites, the strategies of energy systems configuration, and system operation strategies. By the proposed models, the minimum unit ammonia cost is adopted as the objective function considering the operation constraints and strategies of different system configurations and different installation sites to optimize the capacity configurations of main components, such as wind generators, photovoltaic generators, equipment of producing hydrogen by water electrolysis, and energy storages. Taking a GW-level RePtA system as an example, the impact of different energy storage configurations at typical five types of installation sites on the optimal configuration and economic performance of the system are quantitatively analyzed and compared.

关键词

风电 / 光伏 / 储能 / 可再生能源制氨 / 容量优化配置

Key words

wind power / photovoltaics / energy storage / renewable power to ammonia / capacity configuration optimization

引用本文

导出引用
茆美琴, 陶伟鹏, 武继训, 汪海宁, 邹绍琨. 基于风光概率预测的可再生能源制氨系统容量优化配置方法[J]. 太阳能学报. 2025, 46(8): 644-655 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0636
Mao Meiqin, Tao Weipeng, Wu Jixun, Wang Haining, Zou Shaokun. CAPACITY CONFIGURATION OPTIMIZATION FOR RENEWABLE POWER AMMONIA PROVDCTION SYSTEM BASED ON WIND AND SOLAR PROBABILITY PREDICTION[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 644-655 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0636
中图分类号: TK91   

参考文献

[1] 余友元, 余林峰. 对合成氨生产中的废气利用与节能效益分析[J]. 四川化工, 2022, 25(3): 60-63.
YU Y Y, YU L F.Analysis on waste gas utilization and energy saving benefit in synthetic ammonia production[J]. Sichuan chemical industry, 2022, 25(3): 60-63.
[2] ROUWENHORST K H R, KRZYWDA P M, BENES N E, et al. Ammonia production technologies[M]//Techno-Economic Challenges of Green Ammonia as an Energy Vector. Amsterdam: Elsevier, 2021: 41-83.
[3] ARMIJO J, PHILIBERT C.Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina[J]. International journal of hydrogen energy, 2020, 45(3): 1541-1558.
[4] MÜLLER M, PFEIFER M, HOLTZ D, et al. Comparison of green ammonia and green hydrogen pathways in terms of energy efficiency[J]. Fuel, 2024, 357: 129843.
[5] 王明华, 陈泽宇, 王雯, 等. 面向不同应用场景的中国氨能制储运用全产业链碳足迹分析[J]. 洁净煤技术, 2024, 30(5): 1-12.
WANG M H, CHEN Z Y, WANG W, et al.Carbon footprint analysis of China’s ammonia energy production-storage-transportation-utilization full-chain for different application scenarios[J]. Clean coal technology, 2024, 30(5): 1-12.
[6] ARNAIZ DEL POZO C, CLOETE S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future[J]. Energy conversion and management, 2022, 255: 115312.
[7] CAMPION N, NAMI H, SWISHER P R, et al.Techno-economic assessment of green ammonia production with different wind and solar potentials[J]. Renewable and sustainable energy reviews, 2023, 173: 113057.
[8] SHEPHERD J, HAIDER ALI KHAN M, AMAL R, et al. Open-source project feasibility tools for supporting development of the green ammonia value chain[J]. Energy conversion and management, 2022, 274: 116413.
[9] EGERER J, GRIMM V, NIAZMAND K, et al.The economics of global green ammonia trade-“Shipping Australian wind and sunshine to Germany”[J]. Applied energy, 2023, 334: 120662.
[10] WANG C L, WALSH S D C, LONGDEN T, et al. Optimising renewable generation configurations of off-grid green ammonia production systems considering Haber-Bosch flexibility[J]. Energy conversion and management, 2023, 280: 116790.
[11] LI J R, LIN J, HEUSER P M, et al.Co-planning of regional wind resources-based ammonia industry and the electric network: a case study of Inner Mongolia[J]. IEEE transactions on power systems, 2022, 37(1): 65-80.
[12] BOUABOULA H, OUIKHALFAN M, SAADOUNE I, et al.Addressing sustainable energy intermittence for green ammonia production[J]. Energy reports, 2023, 9: 4507-4517.
[13] 马丽叶, 刘美思, 尹钰, 等. 主动配电网中多微网鲁棒环境经济调度研究[J]. 太阳能学报, 2020, 41(11): 1-10.
MA L Y, LIU M S, YIN Y, et al.Robust environment economic scheduling of multimicrogrids in active distribution network[J]. Acta energiae solaris sinica, 2020, 41(11): 1-10.
[14] 杨立滨, 曹阳, 魏韡, 等. 计及风电不确定性和弃风率约束的风电场储能容量配置方法[J]. 电力系统自动化, 2020, 44(16): 45-52.
YANG L B, CAO Y, WEI W, et al.Configuration method of energy storage for wind farms considering wind power uncertainty and wind curtailment constraint[J]. Automation of electric power systems, 2020, 44(16): 45-52.
[15] CHEN Z X, ZHANG D L, JIANG H R, et al.Load forecasting based on LSTM neural network and applicable to loads of “replacement of coal with electricity”[J]. Journal of electrical engineering & technology, 2021, 16(5): 2333-2342.
[16] HE Y Y, QIN Y, WANG S, et al.Electricity consumption probability density forecasting method based on LASSO-quantile regression neural network[J]. Applied energy, 2019, 233: 565-575.
[17] VAN DER MEER D W, SHEPERO M, SVENSSON A, et al. Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes[J]. Applied energy, 2018, 213: 195-207.
[18] MUNKHAMMAR J, VAN DER MEER D, WIDÉN J. Probabilistic forecasting of high-resolution clear-sky index time-series using a Markov-chain mixture distribution model[J]. Solar energy, 2019, 184: 688-695.
[19] ROGER B N.An introduction to Copula[M]. New York:Springer-Verlag,1998: 28-48.
[20] 赵振宇, 解冰清. 计及风光互补特性的风光容量优化配置模型[J]. 太阳能学报, 2023, 44(8): 149-156.
ZHAO Z Y, XIE B Q.Optimal allocation model of wind-solar capacity considering wind-solar complementary characteristics[J]. Acta energiae solaris sinica, 2023, 44(8): 149-156.
[21] 宋宇, 李涵. 基于核密度估计和Copula函数的风、 光出力场景生成[J]. 电气技术, 2022, 23(1): 56-63.
SONG Y, LI H.Typical scene generation of wind and photovoltaic power output based on kernel density estimation and Copula function[J]. Electrical engineering, 2022, 23(1): 56-63.
[22] 黄悦华, 刘兴韬, 张磊, 等. 基于C藤Copula及条件风险价值的综合能源系统灵活爬坡优化调度[J]. 中国电机工程学报, 2023, 43(24): 9411-9423.
HUANG Y H, LIU X T, ZHANG L, et al.Flexible ramping optimal scheduling of integrated energy system based on C-vine Copula and conditional value at risk[J]. Proceedings of the CSEE, 2023, 43(24): 9411-9423.
[23] SIDDIQUI O, DINCER I.Optimization of a new renewable energy system for producing electricity, hydrogen and ammonia[J]. Sustainable energy technologies and assessments, 2021, 44: 101023.
[24] HASAN A, DINCER I.Development of an integrated wind and PV system for ammonia and power production for a sustainable community[J]. Journal of cleaner production, 2019, 231: 1515-1525.
[25] WEN D, AZIZ M.Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario[J]. Applied energy, 2022, 319: 119272.
[26] 林今, 余志鹏, 张信真, 等. 可再生能源电制氢合成氨系统的并/离网运行方式与经济性分析[J]. 中国电机工程学报, 2024, 44(1): 117-127.
LIN J, YU Z P, ZHANG X Z, et al.On-grid/off-grid operation mode and economic analysis of renewable power to ammonia system[J]. Proceedings of the CSEE, 2024, 44(1): 117-127.
[27] 袁文腾, 陈亮, 王春波, 等. 基于氨储能技术的电转氨耦合风-光-火综合能源系统双层优化调度[J]. 中国电机工程学报, 2023, 43(18): 6992-7003.
YUAN W T, CHEN L, WANG C B, et al.Bi-level optimal scheduling of power-to-ammonia coupling wind-photovoltaic-thermal integrated energy system based on ammonia energy storage technology[J]. Proceedings of the CSEE, 2023, 43(18): 6992-7003.
[28] JOE H.Multivariate models and dependence concepts[M]. London Chapman & Hall, 1997.
[29] 朱瑞兆, 薛桁. 我国风能资源[J]. 太阳能学报, 1981, 2(2): 117-124.
ZHU R Z, XUE H.The wind energy resources in China[J]. Acta energiae solaris sinica, 1981, 2(2): 117-124.
[30] 王炳忠. 中国太阳能资源利用区划[J]. 太阳能学报, 1983, 4(3): 221-228.
WANG B Z.Solar energy resource division in China[J]. Acta energiae solaris sinica, 1983, 4(3): 221-228.

基金

国家自然科学基金(51577047); 高等学校学科创新引智计划(“111”项目)(BP0719039)

PDF(2218 KB)

Accesses

Citation

Detail

段落导航
相关文章

/