平流层飞艇太阳电池热机械特性研究

孙康文, 洪暘, 崔海薇, 梁浩全, 程冬吉

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 455-462.

PDF(3622 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3622 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 455-462. DOI: 10.19912/j.0254-0096.tynxb.2024-0642

平流层飞艇太阳电池热机械特性研究

  • 孙康文, 洪暘, 崔海薇, 梁浩全, 程冬吉
作者信息 +

RESEARCH ON THERMAL-MECHANICAL FATIGUE CHARACTERISTICS OF STRATOSPHERIC AIRSHIP SOLAR CELL MODULE

  • Sun Kangwen, Hong Yang, Cui Haiwei, Liang Haoquan, Cheng Dongji
Author information +
文章历史 +

摘要

为利用热机械分析优化光伏组件寿命,在建立具有精细结构热力学模型的基础上,考虑中间膜材料在低温情况下的玻璃化转变,并加入焊锡黏塑性模型,以研究在高空温度冷热循环过程中,组件各材料因热膨胀系数不匹配导致的热机械应力,比较乙烯-醋酸乙烯酯共聚物(EVA)、聚烯烃弹性体(POE)、聚乙烯醇缩丁醛(PVB)作为中间膜时焊点疲劳寿命的区别,发现POE作为封装材料时焊点的疲劳寿命更长。

Abstract

In order to optimize the lifespan of solar cell modules through thermal mechanical analysis, this paper establishes a thermal-mechanical model with fine structure, considering the glass transition of the intermediate film material at low temperatures and the tin solder plastic model. On this basis, this study investigates the thermal-mechanical stress caused by the mismatch in thermal expansion coefficients of the materials during the high-altitude environmental thermal cycling process. The study also compares the differences in tin solder joint fatigue life when using Ethylene-Vinyl Acetate(EVA)、Polyolefin Elastomer(POE) and Polyvinyl Butyral(PVB) as intermediate films. The results show that when POE is used as encapsulation material, the solder joint will have a longer fatigue life.

关键词

太阳电池 / 疲劳损伤 / 有限元方法 / 平流层飞艇 / 寿命预测

Key words

solar cells / fatigue damage / finite element method / stratospheric airship / life prediction

引用本文

导出引用
孙康文, 洪暘, 崔海薇, 梁浩全, 程冬吉. 平流层飞艇太阳电池热机械特性研究[J]. 太阳能学报. 2025, 46(8): 455-462 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0642
Sun Kangwen, Hong Yang, Cui Haiwei, Liang Haoquan, Cheng Dongji. RESEARCH ON THERMAL-MECHANICAL FATIGUE CHARACTERISTICS OF STRATOSPHERIC AIRSHIP SOLAR CELL MODULE[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 455-462 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0642
中图分类号: V274   

参考文献

[1] 杨希祥, 朱炳杰, 邓小龙, 等. Stratobus平流层飞艇项目研究进展与仿真分析[J]. 航空学报, 2021, 42(9): 224579.
YANG X X, ZHU B J, DENG X L, et al.Development status and simulation analysis of stratospheric airship Stratobus[J]. Acta aeronautica et astronautica sinica, 2021, 42(9): 224579.
[2] 赵新路. 平流层飞艇总体设计优化方法研究[D]. 长沙: 国防科学技术大学, 2016.
ZHAO X L.Research on conceptual design optimization method for stratosphere airship[D]. Changsha: National University of Defense Technology, 2016.
[3] 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56.
ZHAO D, LIU D X, SUN K W, et al.Research status, technical difficulties and development trend of stratospheric airship[J]. Acta aeronautica et astronautica sinica, 2016, 37(1): 45-56.
[4] SUN K W, ZHANG X Y, XU D D.The numerical simulation research of an ultra-light photovoltaic cell multilayer composite structure[C]//Proceedings of the 2016 5th International Conference on Civil, Architectural and Hydraulic Engineering (ICCAHE 2016). Zhuhai, China, 2016: 87-94.
[5] SANDER M, DIETRICH S, PANDER M, et al.Systematic investigation of cracks in encapsulated solar cells after mechanical loading[J]. Solar energy materials and solar cells, 2013, 111: 82-89.
[6] 陶志勇, 易廷军, 林森, 等. 轻量化M-CNN的太阳电池表面缺陷识别[J]. 太阳能学报, 2024, 45(6): 341-348.
TAO Z Y, YI T J, LIN S, et al.Lightweight M-CNN solar cell surface defect identification[J]. Acta energiae solaris sinica, 2024, 45(6): 341-348.
[7] KAJARI-SCHRÖDER S, KUNZE I, EITNER U, et al. Spatial and directional distribution of cracks in silicon PV modules after uniform mechanical loads[C]//2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 2011: 833-837.
[8] SANDER M, HENKE B, SCHWEIZER S, et al.PV module defect detection by combination of mechanical and electrical analysis methods[C]//2010 35th IEEE Photovoltaic Specialists Conference. Honolulu, HI, USA, 2010: 1765-1769.
[9] YIM T H, KOO S H, LEE H.Study on thermal behavior of metal foils and numerical analysis of thermal stress for flexible solar cell[J]. Current applied physics, 2010, 10(2): S241-S243.
[10] HASAN O, ARIF A F M, SIDDIQUI M U. Finite element modeling, analysis, and life prediction of photovoltaic modules[J]. Journal of solar energy engineering, 2014, 136(2): 021022.
[11] SONG W J R, TIPPABHOTLA S K, TAY A A O, et al. Numerical simulation of the evolution of stress in solar cells during the entire manufacturing cycle of a conventional silicon wafer based photovoltaic laminate[J]. IEEE journal of photovoltaics, 2018, 8(1): 210-217.
[12] RENDLER L C, ROMER P, BEINERT A J, et al.Thermomechanical stress in solar cells: contact pad modeling and reliability analysis[J]. Solar energy materials and solar cells, 2019, 196: 167-177.
[13] GONZALEZ M, GOVAERTS J, LABIE R, et al. Thermo-mechanical challenges of advanced solar cell modules[C]//2011 12th Intl Conf on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. Linz, Austria, 2011: 1/7-7/7.
[14] SHEN Y L.Numerical study of solder bond failure in photovoltaic modules[J]. Procedia engineering, 2016, 139: 93-100.
[15] BOSCO N, SPRINGER M, HE X.Viscoelastic material characterization and modeling of photovoltaic module packaging materials for direct finite-element method input[J]. IEEE journal of photovoltaics, 2020, 10(5): 1424-1440.
[16] TAO W S, BAO G C, LIU J H, et al.Thermo-mechanical stress modeling and experimental investigation on micro-cracks in tilling ribbon photovoltaic modules during lamination and mechanical load test[J]. Solar energy, 2023, 249: 521-531.
[17] DIETRICH S, PANDER M, SANDER M, et al.Mechanical and thermomechanical assessment of encapsulated solar cells by finite-element-simulation[C]//Reliability of Photovoltaic Cells, Modules, Components, and Systems III. San Diego, California, 2010: 77730F.
[18] HASAN O, ARIF A F M. Performance and life prediction model for photovoltaic modules: effect of encapsulant constitutive behavior[J]. Solar energy materials and solar cells, 2014, 122: 75-87.
[19] 才晶晶, 李兆杰, 张衍垒, 等. 相变材料在长期驻空平流层飞艇上的应用探讨[J]. 太阳能学报, 2021, 42(3): 456-462.
CAI J J, LI Z J, ZHANG Y L, et al.Application of phase change materials in long-endurance stratospheric airship[J]. Acta energiae solaris sinica, 2021, 42(3): 456-462.
[20] LI J, LYU M Y, TAN D J, et al.Output performance analyses of solar array on stratospheric airship with thermal effect[J]. Applied thermal engineering, 2016, 104: 743-750.
[21] KAYHAN Ö.A thermal model to investigate the power output of solar array for stratospheric balloons in real environment[J]. Applied thermal engineering, 2018, 139: 113-120.
[22] DAI Q M, CAO L, ZHANG G G, et al.Thermal performance analysis of solar array for solar powered stratospheric airship[J]. Applied thermal engineering, 2020, 171: 115077.
[23] SUN K W, JI X Z, SHAN C, et al.Extending the flight endurance of stratospheric airships using regenerative fuel cells-assisted pressure maintenance[J]. Renewable energy, 2024, 227: 120470.
[24] ALAM M I, PANT R S.A multi-node model for transient heat transfer analysis of stratospheric airships[J]. Advances in space research, 2017, 59(12): 3023-3035.
[25] JIANG Y, LV M Y, CHEN X Y, et al.An optimization approach for improving the solar array output power of stratospheric aerostat[J]. Aerospace science and technology, 2021, 118: 106916.
[26] 张锡光. 低轨长寿命光伏阵列锡焊焊点可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHANG X G.Study on the reliability of solder joint for long life solar array in low orbit[D]. Harbin: Harbin Institute of Technology, 2021.
[27] ZHU J, OWEN-BELLINI M, MONTIEL-CHICHARRO D, et al. Effect of viscoelasticity of ethylene vinyl acetate encapsulants on photovoltaic module solder joint degradation due to thermomechanical fatigue[J]. Japanese journal of applied physics, 2018, 57(8S3): 08RG03.
[28] DARVEAUX R.Effect of simulation methodology on solder joint crack growth correlation[C]//2000 Proceedings. 50th Electronic Components and Technology Conference. Las Vegas, NV, USA, 2000: 1048-1058.
[29] KRAKOVSKÝ I, VARGA M, GALLEGO FERRER G, et al.Structure and properties of epoxy/polyaniline nanocomposites[J]. Journal of non-crystalline solids, 2012, 358(2): 414-419.
[30] KEMPE M D, THAPA P. Low-cost, single-layer relacement for the back-sheet and encapsulant layers: preprint[C]//2008 SPIE PV Reliability Symposium. San Diego. CA, USA, 2008: NREL/CP-520-42795.

基金

国家自然科学基金(51775021; 52302511); 中央高校基本科研业务费专项(YWF-23-JC01; YWF-24-JC09)

PDF(3622 KB)

Accesses

Citation

Detail

段落导航
相关文章

/