计及电动汽车的区域综合能源系统双层配置调度优化策略

戈文祺, 王晓彤

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 656-665.

PDF(2366 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2366 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 656-665. DOI: 10.19912/j.0254-0096.tynxb.2024-0644

计及电动汽车的区域综合能源系统双层配置调度优化策略

  • 戈文祺, 王晓彤
作者信息 +

OPTIMISATION OF REGIONAL INTEGRATED ENERGY SYSTEM SCHEDULING STRATEGIES TAKING INTO ACCOUNT ELECTRIC VEHICLES

  • Ge Wenqi, Wang Xiaotong
Author information +
文章历史 +

摘要

随着电动汽车的大量普及应用,为解决用户最经济目标下综合能源系统与电动汽车间的协调互动问题,实现优化调度,该文在分析电动汽车充电特性的基础上,提出一种电动汽车-综合能源系统双层协同优化模型。首先,利用双层蒙特卡洛法计算常见品牌电动汽车的充电负荷,进一步综合全面预测区域电动汽车全部负荷,纵向类比区域内电动汽车充电需求负荷;其次,在应用分时电价机制的基础上考虑电动汽车参与综合能源系统对系统经济性的影响,进行能源优化调度策略研究;最后,代入算例验证,结果表明利用该文提出的双层耦合模型进行电动汽车与区域综合能源系统互动分析后,各类负荷与网络交互功率总量提高,大大降低了用户成本。

Abstract

With the massive popularity and application of electric vehicles, in order to solve the problem of coordination and interaction between integrated energy system and electric vehicles under the most economical scenario for users and to achieve optimal scheduling, this paper innovatively proposes a two-layer co-optimization model of electric vehicle-integrated energy system on the basis of analyzing the charging characteristics of electric vehicles. Firstly, the Monte Carlo method is used to calculate the charging load of common brands of electric vehicles, and the vertical analogy is made to the regional EV charging plan. Secondly, the impact of EV participation in the integrated energy system on the system economy is considered on the basis of time-sharing tariffs, and the optimal scheduling strategy is investigated. Finally, substituting the arithmetic examples for verification, the results show that after using the two-layer model innovatively proposed in this paper for the analysis of the interaction between electric vehicles and the integrated regional energy system, the total amount of power of all types of loads interacting with the network is increased, which greatly reduces the cost of the users.

关键词

电动汽车 / 综合能源系统 / 双层优化 / 消纳 / 调度 / 互补

Key words

electric vehicles / integrated energy system / two-layer optimisation / consumption / dispatch / complementary

引用本文

导出引用
戈文祺, 王晓彤. 计及电动汽车的区域综合能源系统双层配置调度优化策略[J]. 太阳能学报. 2025, 46(8): 656-665 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0644
Ge Wenqi, Wang Xiaotong. OPTIMISATION OF REGIONAL INTEGRATED ENERGY SYSTEM SCHEDULING STRATEGIES TAKING INTO ACCOUNT ELECTRIC VEHICLES[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 656-665 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0644
中图分类号: TM73   

参考文献

[1] 刘蓉晖, 李阳, 杨秀, 等. 考虑需求响应的社区综合能源系统两阶段优化调度[J]. 太阳能学报, 2021, 42(9): 46-54.
LIU R H, LI Y, YANG X, et al.Two-stage optimal scheduling of community integrated energy system considering demand response[J]. Acta energiae solaris sinica, 2021, 42(9): 46-54.
[2] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[3] 黄宇, 王宇涛, 李淑琴, 等. 计及火用分析的综合能源系统多目标优化调度[J]. 太阳能学报, 2022, 43(7): 30-38.
HUANG Y, WANG Y T, LI S Q, et al.Multi-objective optimal scheduling of integrated energy system with thermodynamic exergy analysis method[J]. Acta energiae solaris sinica, 2022, 43(7): 30-38.
[4] 王扬, 路菲, 李骥, 等. 基于综合优化目标的低碳园区能源系统规划配置[J]. 中国电力, 2024, 57(4): 14-24.
WANG Y, LU F, LI J, et al.Multi-energy system planning and configuration study for low-carbon parks based on comprehensive optimization objectives[J]. Electric power, 2024, 57(4): 14-24.
[5] 崔杨, 谷春池, 付小标, 等. 考虑广义电热需求响应的含碳捕集电厂综合能源系统低碳经济调度[J]. 中国电机工程学报, 2022, 42(23): 8431-8446.
CUI Y, GU C C, FU X B, et al.Low-carbon economic dispatch of integrated energy system with carbon capture power plants considering generalized electric heating demand response[J]. Proceedings of the CSEE, 2022, 42(23): 8431-8446.
[6] 赵海彭, 苗世洪, 李超, 等. 考虑冷热电需求耦合响应特性的园区综合能源系统优化运行策略研究[J]. 中国电机工程学报, 2022, 42(2): 573-589.
ZHAO H P, MIAO S H, LI C, et al.Research on optimal operation strategy for park-level integrated energy system considering cold-heat-electric demand coupling response characteristics[J]. Proceedings of the CSEE, 2022, 42(2): 573-589.
[7] 王子驰, 雷炳银, 杨灵艺, 等. 考虑电热联合需求响应的区域综合能源系统多目标双层优化调度[J]. 电力系统及其自动化学报, 2021, 33(7): 120-127.
WANG Z C, LEI B Y, YANG L Y, et al.Multi-objective double-step optimal dispatching of regional integrated energy system considering combined electric and heat demand response[J]. Proceedings of the CSU-EPSA, 2021, 33(7): 120-127.
[8] 许福鹿. 考虑电热需求响应的园区综合能源系统协同优化研究[D]. 长沙: 长沙理工大学, 2019.
XU F L.Research on collaborative optimization of integrated energy system for park considering electric heating demand response[D]. Changsha: Changsha University of Science & Technology, 2019.
[9] YAN Z, GUO X, HUI J, et al.Optimization of energy consumption and dimensional accuracy for fused deposition modeling processes through a hybrid method[J]. The international journal of advanced manufacturing technology. 2025, 137(5): 2335-2354.
[10] 张程, 匡宇, 陈文兴, 等. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5): 669-681.
ZHANG C, KUANG Y, CHEN W X, et al.Low carbon economy optimization of integrated energy system considering electric vehicle charging mode and multi-energy coupling[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 669-681.
[11] 锁军, 李龙, 贺瀚青, 等. 考虑交通路况的电动汽车充电负荷预测[J]. 电网与清洁能源, 2022, 38(10): 141-147.
SUO J, LI L, HE H Q, et al.Load forecasting of electric vehicle charging considering traffic conditions[J]. Power system and clean energy, 2022, 38(10): 141-147.
[12] 李娇, 杨伟. 考虑出行路径决策的电动汽车充电负荷时空预测方法[J]. 电力电容器与无功补偿, 2023, 44(4): 62-71.
LI J, YANG W.Spatial-temporal forecast method of electric vehicles charging load considering decision-making of trip path[J]. Power capacitor & reactive power compensation, 2023, 44(4): 62-71.
[13] AKHAVAN-REZAI E, SHAABAN M F, EL-SAADANY E F, et al. Online intelligent demand management of plug-In electric vehicles in future smart parking lots[J]. IEEE systems journal, 2016, 10(2): 483-494.
[14] MOZAFAR M R, AMINI M H, MORADI M H.Innovative appraisement of smart grid operation considering large-scale integration of electric vehicles enabling V2G and G2V systems[J]. Electric power systems research, 2018, 154: 245-256.
[15] BUJA G, BERTOLUZZO M, FONTANA C.Reactive power compensation capabilities of V2G-enabled electric vehicles[J]. IEEE transactions on power electronics, 2017, 32(12): 9447-9459.
[16] 张晓烽, 战钰, 刘玉婷, 等. 考虑新能源汽车的住宅综合能源系统多目标优化配置研究[J]. 热力发电, 2023, 52(12): 38-48.
ZHANG X F, ZHAN Y, LIU Y T, et al.Research on multi-objective optimization allocation of residential integrated energy system considering new energy vehicles[J]. Thermal power generation, 2023, 52(12): 38-48.
[17] 肖秋瑶, 杨騉, 宋政湘. 考虑碳交易和电动汽车充电负荷的工业园区综合能源系统调度策略[J]. 高电压技术, 2023, 49(4): 1392-1401.
XIAO Q Y, YANG K, SONG Z X.Scheduling strategy of industrial parks integrated energy system considering carbon trading and electric vehicle charging load[J]. High voltage engineering, 2023, 49(4): 1392-1401.
[18] 谭青博, 潘伟, 王竹宁, 等. 新型电力系统下综合能源系统的投资决策模型[J]. 智慧电力, 2023, 51(8): 46-52.
TAN Q B, PAN W, WANG Z N, et al.Investment decision model for comprehensive energy system under new power system[J]. Smart power, 2023, 51(8): 46-52.
[19] 刘小平, 丁明, 张颖媛, 等. 微网系统的动态经济调度[J]. 中国电机工程学报, 2011, 31(31): 77-84.
LIU X P, DING M, ZHANG Y Y, et al.Dynamic economic dispatch for microgrids[J]. Proceedings of the CSEE, 2011, 31(31): 77-84.
[20] 周鑫, 韩肖清, 李廷钧, 等. 计及需求响应和电能交互的多主体综合能源系统主从博弈优化调度策略[J]. 电网技术, 2022, 46(9): 3333-3346.
ZHOU X, HAN X Q, LI T J, et al.Master-slave game optimal scheduling strategy for multi-agent integrated energy system based on demand response and power interaction[J]. Power system technology, 2022, 46(9): 3333-3346.
[21] 张涛, 刘景, 杨晓雷, 等. 计及主/被动需求响应与条件风险价值的微网经济调度[J]. 高电压技术, 2021, 47(9): 3292-3304.
ZHANG T, LIU J, YANG X L, et al.Economic dispatch of microgrid considering active/passive demand response and conditional value at risk[J]. High voltage engineering, 2021, 47(9): 3292-3304.
[22] 胡蓉, 魏震波, 郭毅, 等. 现货市场下计及用户需求响应弹性差异的微电网优化运营分析[J]. 高电压技术, 2022, 48(4): 1393-1402.
HU R, WEI Z B, GUO Y, et al.Analysis of optimal operation of microgrid considering the differences in user demand response elasticity in spot market[J]. High voltage engineering, 2022, 48(4): 1393-1402.
[23] 崔杨, 张汇泉, 仲悟之, 等. 考虑需求响应的含光热电站可再生能源高渗透率电力系统多源优化调度[J]. 高电压技术, 2020, 46(5): 1486-1496.
CUI Y, ZHANG H Q, ZHONG W Z, et al.Multi-source optimal scheduling of renewable energy high-permeability power system with CSP plants considering demand response[J]. High voltage engineering, 2020, 46(5): 1486-1496.
[24] 王晞, 徐浩, 王海燕, 等. 考虑风电和电动汽车不确定性的综合能源系统日前经济调度[J]. 电力建设, 2020, 41(12): 80-89.
WANG X, XU H, WANG H Y, et al.Day-ahead economic dispatch of integrated energy system considering uncertainties of wind power and electric vehicles[J]. Electric power construction, 2020, 41(12): 80-89.
[25] 邵文锋, 聂祥论, 阚超. 计及电动汽车的综合能源系统优化调度[J]. 自动化与仪表, 2023, 38(8): 1-5.
SHAO W F, NIE X L, KAN C.Optimal scheduling of integrated energy system considering electric vehicles[J]. Automation & instrumentation, 2023, 38(8): 1-5.

基金

国家自然科学基金青年项目(51707128)

PDF(2366 KB)

Accesses

Citation

Detail

段落导航
相关文章

/