以风电齿轮箱中平行轴直齿轮副为研究对象,考虑存在中心距误差和轴不对中误差时,修正啮合点径向力和切向力,基于切片势能法建立啮合刚度计算模型,该模型充分考虑真实齿廓型线特性和基体刚度的耦合效应,并引入扭转刚度来计算轴不对中带来的附加刚度项;推导包含啮合误差的齿轮啮合角和啮合点压力角模型;齿面时变摩擦系数随啮合角改变而改变,修正含时变摩擦系数的基体耦合刚度和扭转刚度模型;研究中心距误差、轴不对中和时变摩擦对啮合刚度的影响规律。结果表明:引入时变摩擦系数后,摩擦力使啮合刚度在啮入阶段增大,啮出阶段减小;与定摩擦力作用啮合刚度在节点处突变相比,时变摩擦啮合刚度更为平滑;正中心距误差会通过减小啮合角来降低啮合刚度;轴不对中误差会导致啮合刚度剧烈减小,单、双齿啮合时间发生变化;两种误差共同作用时,正、负中心距误差会分别叠加和削弱轴不对中误差对啮合刚度带来的影响。
Abstract
Taking spur gear pair of wind turbine gearbox as the study object, this study modifies the radial and tangential forces at the meshing point when considering center distance error and shaft misalignment error. A mesh stiffness analysis model is built by the slice potential energy method, which fully considers the characteristics of the real tooth profile and the coupling effect of the fillet foundation stiffness. Additionally, torsional stiffness is introduced to calculate the additional stiffness resulting from shaft misalignment. The model of gear meshing Angle and meshing point pressure Angle including meshing error is derived. The time-varying friction coefficient on the tooth surface varies with the pressure angle, necessitating the revision of the fillet foundation coupling stiffness and torsional stiffness models to account for time-varying friction. The study investigates the influence of center distance error, shaft misalignment error, and time-varying friction on mesh stiffness. The results reveal that after the introduction of a time-varying friction coefficient, the friction force increases the meshing stiffness during the meshing in stage and decreases it during the meshing out stage. Compared to the abrupt change in mesh stiffness at the node under constant friction, the mesh stiffness under time-varying friction exhibits smoother behavior. Positive center distance error reduces mesh stiffness by decreasing the meshing angle. Shaft misalignment leads to a significant reduction in mesh stiffness and changes in meshing time of single and double-tooth. When both errors coexist, positive and negative center distance error can either amplify or mitigate the impact of shaft misalignment error on mesh stiffness.
关键词
风电机组 /
时变啮合刚度 /
中心距误差 /
不对中 /
时变摩擦系数
Key words
wind turbines /
time-varying mesh stiffness /
center distance error /
misalignment /
time-varying friction coefficient
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 常乐浩. 平行轴齿轮传动系统动力学通用建模方法与动态激励影响规律研究[D]. 西安: 西北工业大学, 2014.
CHANG L H.A generalized dynamic model for parallel shaft gear transmissions and the influences of dynamic excitations[D]. Xi’an: Northwestern Polytechnical University, 2014.
[2] 谭建军, 杨书益, 李浩, 等. 齿面粗糙度对风电齿轮箱行星轮系动力学特性影响[J]. 太阳能学报, 2024, 45(3): 122-132.
TAN J J, YANG S Y, LI H, et al.Dynamic characteristics of planetary gear train in wind turbine gearbox under influences of tooth roughness[J]. Acta energiae solaris sinica, 2024, 45(3): 122-132.
[3] 宁志远, 陈长征, 孔祥希. 混合弹流润滑条件下风电行星直齿轮内啮合动态特性分析[J]. 太阳能学报, 2022, 43(1): 101-107.
NING Z Y, CHEN C Z, KONG X X.Dynamic characteristics analysis of wind power planetary spur gears’internal meshing under hybrid elastohydrodynamic lubrication[J]. Acta energiae solaris sinica, 2022, 43(1): 101-107.
[4] XIE C Y, HUA L, HAN X H, et al.Analytical formulas for gear body-induced tooth deflections of spur gears considering structure coupling effect[J]. International journal of mechanical sciences, 2018, 148: 174-190.
[5] MA H, SONG R Z, PANG X, et al.Time-varying mesh stiffness calculation of cracked spur gears[J]. Engineering failure analysis, 2014, 44: 179-194.
[6] SAXENA A, PAREY A, CHOUKSEY M.Time varying mesh stiffness calculation of spur gear pair considering sliding friction and spalling defects[J]. Engineering failure analysis, 2016, 70: 200-211.
[7] 郝壮壮, 张庆春, 胡云波, 等. 齿面摩擦和几何偏心对含变位直齿轮啮合刚度的影响研究[J]. 中国机械工程, 2023, 34(23): 2812-2823.
HAO Z Z, ZHANG Q C, HU Y B, et al.Research on influences of tooth friction and geometric eccentricity errors on mesh stiffness of profile shifted spur gear pairs[J]. China mechanical engineering, 2023, 34(23): 2812-2823.
[8] 张涛, 何泽银, 殷时蓉, 等. 考虑时变摩擦的直齿轮副啮合刚度计算及其影响因素分析[J]. 机械传动, 2019, 43(9): 54-59.
ZHANG T, HE Z Y, YIN S R, et al.Stiffness calculation and influence factor analysis of spur gear pair considering time-varying friction[J]. Journal of mechanical transmission, 2019, 43(9): 54-59.
[9] LUO Y, BADDOUR N, LIANG M.Effects of gear center distance variation on time varying mesh stiffness of a spur gear pair[J]. Engineering failure analysis, 2017, 75: 37-53.
[10] EL YOUSFI B, SOUALHI A, MEDJAHER K, et al.A new analytical method for modeling the effect of assembly errors on a motor-gearbox system[J]. Energies, 2021, 14(16): 4993.
[11] 刘昶, 石万凯, 刘坤, 等. 误差齿面下直齿轮副内部激励及动态特性分析[J]. 振动与冲击, 2022, 41(16): 177-187.
LIU C, SHI W K, LIU K, et al.Analysis of internal excitation and dynamic characteristicsof spur gear pair with error tooth surface[J]. Journal of vibration and shock, 2022, 41(16): 177-187.
[12] SAXENA A, PAREY A, CHOUKSEY M.Effect of shaft misalignment and friction force on time varying mesh stiffness of spur gear pair[J]. Engineering failure analysis, 2015, 49: 79-91.
[13] WANG Q B, XU K, HUAI T S, et al.A mesh stiffness method using slice coupling for spur gear pairs with misalignment and lead crown relief[J]. Applied mathematical modelling, 2021, 90: 845-861.
[14] SUN Z, CHEN S Y, HU Z H, et al.Improved mesh stiffness calculation model of comprehensive modification gears considering actual manufacturing[J]. Mechanism and machine theory, 2022, 167: 104470.
[15] 郭忠, 张艳冬. 基于APDL的渐开线直齿圆柱齿轮参数化精确建模[J]. 机械制造与自动化, 2010, 39(3): 33-36.
GUO Z, ZHANG Y D.Parameterization precise modeling of involutes spur gear based on APDL[J]. Machine building & automation, 2010, 39(3): 33-36.
[16] AZIZ AMEEN H.Effect of shaft misalignment on the stresses distribution of spur gears[J]. Engineering and technology journal, 2010, 28(7): 1321-1339.
[17] SRINATH L S.Advanced mechanics of solids[M]. 3rd ed. New Delhi: Tata McGraw-Hill, 2009: 35-57.
[18] XU H, KAHRAMAN A, ANDERSON N E, et al.Prediction of mechanical efficiency of parallel-axis gear pairs[J]. Journal of mechanical design, 2007, 129(1): 58-68.