太阳能光伏光热-空气源热泵供热系统不同地区模拟仿真研究

张晓明, 王晨铮, 张昊天, 王馨慰, 陈启立

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 545-554.

PDF(4365 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4365 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 545-554. DOI: 10.19912/j.0254-0096.tynxb.2024-0673

太阳能光伏光热-空气源热泵供热系统不同地区模拟仿真研究

  • 张晓明, 王晨铮, 张昊天, 王馨慰, 陈启立
作者信息 +

SIMULATION RESEARCH OF SOLAR PHOTOVOLTAIC PHOTOTHERMAL AIR SOURCE HEAT PUMP HEATING SYSTEM IN DIFFERENT REGIONS

  • Zhang Xiaoming, Wang Chenzheng, Zhang Haotian, Wang Xinwei, Chen Qili
Author information +
文章历史 +

摘要

为提高光伏光热耦合空气源热泵(PV/T-ASHP)供热系统的系统性能,该文提出一种增加预热方式的太阳能光伏光热耦合空气源热泵供热(PV/T-P-ASHP)系统,基于TRNSYS搭建系统模型,验证模型精度后,对比分析PV/T-P-ASHP系统和PV/T-ASHP系统的有关性能提升情况,并探究该系统在不同地区的适用性。结果表明:系统模型验证PV/T电效率、热效率和热泵机组性能系数(COP)的平均相对误差分别为5.09%、9.06%和5.25%,实验模型和结果吻合较好。以北京地区为例,PV/T-P-ASHP系统相比于PV/T-ASHP系统全年运行能耗节约4.38%,热泵机组COP提高36.28%,PV/T综合效率提高4.32%,供暖季系统COP提高4.18%,一次能源节约率提高6.47%。不同地区模拟对比得出,北京地区系统COP提升最高,为4.18%;大连地区PV/T综合效率提升5.78%,一次能源节约率提升6.58%,系统COP提高2.3%,沈阳地区PV/T综合效率、一次能源节约率提高4.24%、5.81%,系统COP提升2.29%;上海地区增加预热方式后系统COP提高1.4%,整体系统性能提升较小。

Abstract

In order to improve the system performance of PHOTOVOLTAIC-THERMAL coupled air source heat pump (PV/T-ASHP) heating system, a solal Photovoltaic-Thermal coupled air source heat pump heating (PV/T-P-ASHP) system with an added preheating method is presented in this paper. The system model is built based on TRNSYS, and after the accuracy of the model is verified, the relevant performance enhancement of the PV/-P-ASHP system and the PV/T-ASHP system is compared and analyzed, and the applicability of the systems in different regions is explored. The results show that the average relative errors of the system model validation for PV/T electrical efficiency, thermal efficiency, and COP of the heat pump unit are 5.09%,9.06%, and 5.25%, respectively, and the experimental model and the results coincide accurately. Taking Beling as an example, it is found that the PV/T-P-ASHP system saves 4.38% of the annual operating energy consumption compared to the PV/-ASHP system, the COP of the heat pump unit is increased by 36.28%, the integrated efficiency of the PV/T is increased by 4.32%, the COP of the system is increased by 4.18% during the heating season, and the primary energy saving rate is increased by 6.47%. Simulation comparisons in different regions show that the highest system COP improvement of 4.18% is observed in Beling, A 5.78% increase in PV/T overall efficiency, a 6.58% increase in primary energy savings, and a 2.3% increase in system COP is observed in Dalian, a 4.24% increase in PV/T overall eficiency. a 5.81% increase in primary energy savings, and a 2.29% increase in system COP is observed in Shenyang, and a 1.4% increase in system COP with the addition of preheating is observed in Shanghai, with a smaller overall system performance improvement.

关键词

太阳能 / PVT / 空气源热泵 / 供热 / TRNSYS / 不同地区

Key words

solar energy / PVT / air source heat pumps / heating / TRNSYS / different regions

引用本文

导出引用
张晓明, 王晨铮, 张昊天, 王馨慰, 陈启立. 太阳能光伏光热-空气源热泵供热系统不同地区模拟仿真研究[J]. 太阳能学报. 2025, 46(8): 545-554 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0673
Zhang Xiaoming, Wang Chenzheng, Zhang Haotian, Wang Xinwei, Chen Qili. SIMULATION RESEARCH OF SOLAR PHOTOVOLTAIC PHOTOTHERMAL AIR SOURCE HEAT PUMP HEATING SYSTEM IN DIFFERENT REGIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 545-554 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0673
中图分类号: TK519   

参考文献

[1] 中国建筑节能协会, 重庆大学城乡建设与发展研究院. 中国建筑能耗与碳排放研究报告(2023年)[J]. 建筑, 2024(2): 46-59.
China Building Energy Efficiency Association, Chongqing University Urban and Rural Construction and Development Institute. Research report on building energy consumption and carbon emissions in China (2023)[J]. Construction and architecture, 2024(2): 46-59.
[2] 谭心, 吴林锋, 虞启辉, 等. 基于ANFIS的太阳能-空气源热泵供暖系统温度控制研究[J]. 太阳能学报, 2024, 45(2): 16-22.
TAN X, WU L F, YU Q H, et al.temperature control research of solar-air source heat pump heating system based on ANFIS[J]. acta energiae solaris sinica, 2024, 45(2): 16-22.
[3] WANG X R, XIA L, BALES C, et al.A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources[J]. Renewable energy, 2020, 146: 2472-2487.
[4] 谭心, 朱振经, 孙国鑫, 等. 基于模糊层次分析法的太阳能-空气源热泵复合供暖系统多目标优化[J]. 太阳能学报, 2022, 43(10): 94-103.
TAN X, ZHU Z J, SUN G X, et al.multi-objective optimization of air-soloar source heat pump combined heating system based on fuzzy analytic hierarch process[J]. acta energiae solaris sinica, 2022, 43(10): 94-103.
[5] 张梦, 郝学军, 佟峥. 太阳能光伏光热空气源热泵供能系统优化模拟[J]. 煤气与热力, 2022, 42(9): 17-21.
ZHANG M, HAO X J, TONG Z.Optimization simulation of solar photovoltaic photothermal air-source heat pump energy supply system[J]. Gas & heat, 2022, 42(9): 17-21.
[6] 汤梓涵, 王帅杰, 鞠振河, 等. 光伏/光热耦合空气源热泵系统性能优化[J]. 综合智慧能源, 2024, 46(4): 34-41.
TANG Z H, WANG S J, JU Z H, et al.Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps[J]. Integrated intelligent energy, 2024, 46(4): 34-41.
[7] BAE S, CHAE H, NAM Y. experimental analysis of an integrated system using photovoltaic-thermal and air source heat pump for real applications[J]. renewable energy, 2023, 217: 119128.
[8] GB 50015—2019, 建筑给水排水设计标准[S].
GB 50015—2019, Standard for design of building water supply and drainage[S].
[9] JGJ/T 67—2019, 办公建筑设计标准[S].
JGJ/T 67—2019, Standard for design of office building[S].
[10] GB 50555—2010, 民用建筑节水设计标准[S].
GB 50555—2010, Standard for water saving design in civil building[S].
[11] GB 55015—2021, 建筑节能与可再生能源利用通用规范[S].
GB 55015—2021, General specification for building energy conservation and renewable energy utilization[S].
[12] GB 50364—2018, 民用建筑太阳能热水系统应用技术标准[S].
GB 50364—2018, Technical standard for solar water heating system of civil buildings[S].
[13] 黄凯良, 侯旭, 冯国会. 基于TRNSYS的严寒地区地热辅助的空气源热泵系统研究[J]. 流体机械, 2023, 51(7): 83-90.
HUANG K L, HOU X, FENG G H.Study on geothermal-assisted air source heat pump system in cold region based on TRNSYS[J]. Fluid machinery, 2023, 51(7): 83-90.
[14] KONG X F, LIU Y S, LI H, et al.Optimization of solar-air source heat pump heating system with phase change heat storage[J]. Applied thermal engineering, 2024, 245: 122897.
[15] 祝彩霞, 孙婷婷, 刘艳峰, 等. 太阳能与空气源热泵联合供暖系统容量匹配及运行优化[J]. 太阳能学报, 2021, 42(8): 215-222.
ZHU C X, SUN T T, LIU Y F, et al.capacity matching and operation optimization of solar energy and air source heat pump combined heating system[J]. acta energiae solaris sinica, 2021, 42(8): 215-222.
[16] 王宝群, 姚强, 宋蔷, 等. 光伏/光热(PVT)系统概况与评价[J]. 太阳能学报, 2009, 30(2): 193-200.
WANG B Q, YAO Q, SONG Q, et al.Photovoltaic-thermal(PVT) systems and their evaluation[J]. Acta energiae solaris sinica, 2009, 30(2): 193-200.
[17] HUANG B J, LIN T H, HUNG W C, et al.Performance evaluation of solar photovoltaic/thermal systems[J]. Solar energy, 2001, 70(5): 443-448.
[18] 刘文杰, 姚剑, 代彦军. 直膨式太阳能PVT热泵系统性能仿真及全年运行性能分析[J]. 制冷学报, 2022, 43(3): 161-166.
LIU W J, YAO J, DAI Y J.Simulation and annual performance analysis on a direct-expansion solar-assisted PVT heat pump system[J]. Journal of refrigeration, 2022, 43(3): 161-166.

PDF(4365 KB)

Accesses

Citation

Detail

段落导航
相关文章

/