考虑黏弹性边界的风电基础地震动响应分析

胡昊, 王海龙, 江琦, 张建伟, 王华震

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 159-167.

PDF(3312 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3312 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 159-167. DOI: 10.19912/j.0254-0096.tynxb.2024-0684

考虑黏弹性边界的风电基础地震动响应分析

  • 胡昊1,2, 王海龙2, 江琦2, 张建伟2, 王华震3
作者信息 +

SEISEMIC DYNAMIC RESPONSE ANALYSIS OF WIND TURBINE FOUNDATION CONSIDORING VISCOELASTIC BOUNDARY

  • Hu Hao1,2, Wang Hailong2, Jiang Qi2, Zhang Jianwei2, Wang Huazhen3
Author information +
文章历史 +

摘要

为探究地震作用下预应力锚栓式基础结构动力响应特性,以新疆某风电场为例,基于混凝土塑性损伤(CDP)模型,考虑基础与锚栓笼的相互作用,建立地基-基础-锚栓笼三维数值仿真模型,利用二次开发实现地基边界弹簧-阻尼器的黏弹性边界模拟,明晰压缩波(P波)45°斜入射与剪切波(SV波)临界角30°斜入射作用下风电基础与锚栓笼的动力响应规律。结果显示,在地震荷载作用下,基础顶部与灌浆层的接触面以及锚板与基础底部的结合区域,应力集中现象较为突出,为损伤的高风险区域;相较于P波,基础损伤破坏对近断层脉冲SV波的敏感性更强;斜向入射导致锚栓笼内侧锚栓承受了较大的应力,对风电基础安全影响更大。因此,风电工程抗震设计中应考虑近断层脉冲SV波对风电基础的影响,确保其在极端地震事件中的安全性和可靠性。

Abstract

In order to explore the dynamic response characteristics of prestressed anchor bolt infrastructure of wind turbines under earthquake action, taking a wind farm in Xinjiang as an example, based on the concrete damaged plasticity model and considering the interaction between foundation and anchor and bolt cage, a three-dimensional numerical simulation model of foundation-base-anchor bolt cage was established, The viscoelastic boundary simulation of foundation boundary spring-damper was realized by secondary development. The dynamic response rules of wind turbine foundation and anchor cage under P wave 45° oblique incidence and SV wave critical angle 30° oblique incidence are clarified. The results show that stress concentration is more prominent in the contact surface between the top of foundation and the grout layer and the joint area between the anchor plate and the bottom of the foundation under seismic load, which is a high-risk area for damage. Compared with P wave, foundation damage is more sensitive to SV wave near fault pulse. Oblique incidence causes the anchor bolt inside the anchor cage to bear greater stress, which has a greater impact on the safety of fan foundation. Therefore, the effect of near-fault pulse SV wave on wind power foundation should be considered in the seismic design of wind power engineering to ensure its safety and reliability in extreme seismic events.

关键词

地震波斜入射 / 黏弹性人工边界 / 塑性损伤模型 / 锚栓笼

Key words

oblique incidence of seismic waves / viscoelastic artificial boundary / plastic damage model / anchor cage

引用本文

导出引用
胡昊, 王海龙, 江琦, 张建伟, 王华震. 考虑黏弹性边界的风电基础地震动响应分析[J]. 太阳能学报. 2025, 46(8): 159-167 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0684
Hu Hao, Wang Hailong, Jiang Qi, Zhang Jianwei, Wang Huazhen. SEISEMIC DYNAMIC RESPONSE ANALYSIS OF WIND TURBINE FOUNDATION CONSIDORING VISCOELASTIC BOUNDARY[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 159-167 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0684
中图分类号: P315.9   

参考文献

[1] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159.
LIU J Z, MA L F, WANG Q H, et al.Offshore wind power supports China’s energy transition[J]. Strategic study of CAE, 2021, 23(1): 149-159.
[2] 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418.
ZHU R, WANG Y, XIANG Y, et al.Study on climate characteristics and development potential of wind energy resources in China[J]. Acta energiae solaris sinica, 2021, 42(6): 409-418.
[3] 袁万. 地震作用下山地风电场风机塔筒和基础的动力有限元分析[J]. 武汉大学学报(工学版), 2022, 55(S2): 186-189.
YUAN W.Dynamic research on the wind turbine-foundation in mountain wind farm under the earthquake by the finite element method[J]. Engineering journal of Wuhan University, 2022, 55(S2): 186-189.
[4] 凌薇宇, 许成顺, 孙毅龙, 等. 地震与水平环境荷载下风电单桩基础动力响应分析[J]. 地震工程与工程振动, 2023, 43(1): 63-76.
LING W Y, XU C S, SUN Y L, et al.Analysis on dynamic response of monopile under combined action of seismic load and horizontal environmental load[J]. Earthquake engineering and engineering dynamics, 2023, 43(1): 63-76.
[5] BOZYIGIT B, BOZYIGIT I, PRENDERGAST L J.Analytical approach for seismic analysis of onshore wind turbines considering soil-structure interaction[J]. Structures, 2023, 51: 226-241.
[6] DAI K S, MAO Z X, ZHANG Y L, et al.Seismic response analyses of a wind turbine under operating conditions considering soil-structure interaction[J]. Chinese journal of engineering, 2017, 39(9): 1436-1442.
[7] 许新勇, 李俊, 李强, 等. 基于CDP本构的风力发电机基础损伤研究[J]. 可再生能源, 2021, 39(5): 626-631.
XU X Y, LI J, LI Q, et al.Research on foundation damage of wind turbine based on CDP constitutive[J]. Renewable energy resources, 2021, 39(5): 626-631.
[8] 陈俊岭, 何欣恒, 冯又全. 风力发电塔基础环基础疲劳破坏加固方法研究[J]. 太阳能学报, 2021, 42(2): 122-128.
CHEN J L, HE X H, FENG Y Q.Research on strengthening method for fatigue damage of embedded-ring concrete foundation for wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(2): 122-128.
[9] 康明虎, 徐慧, 黄鑫. 基础环形式风机基础局部损伤分析[J]. 太阳能学报, 2014, 35(4): 583-588.
KANG M H, XU H, HUANG X.Local damage analysis of near foundation ring in wind turbine foundation[J]. Acta energiae solaris sinica, 2014, 35(4): 583-588.
[10] XU J J, CHEN K, YANG Y F, et al.Research on the force mechanism of the connection between the foundation ring and the anchor cage ring of the high-altitude onshore wind turbine[J]. Journal of physics: conference series, 2022, 2181(1): 012053.
[11] 王海军, 蒋杏雨. 海上风电预应力锚杆笼基础结构设计方法研究[J]. 水力发电, 2016, 42(6): 84-87, 98.
WANG H J, JIANG X Y.Research on structural design method of foundation with pre-stressed anchor cage for offshore wind turbine generator[J]. Water power, 2016, 42(6): 84-87, 98.
[12] 杨中桂, 刘俊, 孟德明. 预应力风机基础承载性能分析[J]. 船舶工程, 2019, 41(S1): 430-433, 448.
YANG Z G, LIU J, MENG D M.Analysis of bearing capacity of prestressed wind turbine foundation[J]. Ship engineering, 2019, 41(S1): 430-433, 448.
[13] 申海洋, 宁小美, 冯若强. 预应力锚栓对风机混凝土基础抗裂和耐久性影响[J]. 混凝土, 2021(11): 155-160.
SHEN H Y, NING X M, FENG R Q.Effect of prestressed anchor bolted on crack and durability of concert foundation of wind turbine[J]. Concrete, 2021(11): 155-160.
[14] 张兵海, 崔炜, 刘毅, 等. 预应力锚栓对风机基础应力分布的影响研究[J]. 建筑结构, 2023, 53(S1): 2555-2560.
ZHANG B H, CUI W, LIU Y, et al.Influence study of prestressed anchor bolts on stress distribution in wind turbine foundation[J]. Building structure, 2023, 53(S1): 2555-2560.
[15] REN X D, LI J W, CHEN J L.Crack propagation, failure and ultimate load capacity of the grout layer in the prestressed anchor bolt foundation of wind turbine tower[J]. Engineering failure analysis, 2023, 153: 107561.
[16] 马笙杰, 迟明杰, 陈红娟, 等. 黏弹性人工边界在ABAQUS中的实现及地震动输入方法的比较研究[J]. 岩石力学与工程学报, 2020, 39(7): 1445-1457.
MA S J, CHI M J, CHEN H J, et al.Implementation of viscous-spring boundary in ABAQUS and comparative study on seismic motion input methods[J]. Chinese journal of rock mechanics and engineering, 2020, 39(7): 1445-1457.
[17] 尹广斌, 张燎军, 俞佩斯. 基于ADINA软基上地震动输入方法研究及其应用[J]. 水电能源科学, 2012, 30(1): 135-138.
YIN G B, ZHANG L J, YU P S.Study on method of earthquake input on soft foundation based on ADINA and its application[J]. Water resources and power, 2012, 30(1): 135-138.
[18] 李述涛, 刘晶波, 宝鑫, 等. 人工边界子结构地震动输入方法在ABAQUS中的实现[J]. 自然灾害学报, 2020, 29(4): 133-141.
LI S T, LIU J B, BAO X, et al.Implementation for seismic wave input method based on the artificial boundary substructure in ABAQUS[J]. Journal of natural disasters, 2020, 29(4): 133-141.
[19] 刘晶波, 谭辉, 王东洋, 等. 土-结构动力相互作用问题分析中地震动输入的一种新方法[J]. 地震工程学报, 2019, 41(1): 1-8.
LIU J B, TAN H, WANG D Y, et al.A new seismic motion input method in soil-structure dynamic interaction analysis[J]. China earthquake engineering journal, 2019, 41(1): 1-8.
[20] 刘晶波, 宝鑫, 谭辉, 等. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法[J]. 土木工程学报, 2020, 53(8): 87-96.
LIU J B, BAO X, TAN H, et al.Seismic wave input method for soil-structure dynamic interaction analysis based on internal substructure[J]. China civil engineering journal, 2020, 53(8): 87-96.
[21] 李明超, 张佳文, 张梦溪, 等. 地震波斜入射下混凝土重力坝的塑性损伤响应分析[J]. 水利学报, 2019, 50(11): 1326-1338, 1349.
LI M C, ZHANG J W, ZHANG M X, et al.Plastic damage response analysis of concrete gravity dam due to obliquely incident seismic waves[J]. Journal of hydraulic engineering, 2019, 50(11): 1326-1338, 1349.

基金

开封市重点研发专项(22ZDYF007); 河南省科技攻关(232102320003); 华北水利水电大学高层次人才启动资金项目(202110001)

PDF(3312 KB)

Accesses

Citation

Detail

段落导航
相关文章

/