面向塔式太阳能热发电系统,研究空沙移动床换热器内稠密气固两相流动及换热的机理和特性,将格子Boltzmann方法(LBM)与离散单元法(DEM)结合,从介观尺度上建立LBM-DEM流动及传热模型。以不同空沙质量流量比为变量,对空沙移动床换热进行数值模拟。分析其中气相和颗粒相温度场变化,比较不同类型的传热热流量在换热过程中所占比例及变化。结果表明,床内紧密的颗粒对气相温度场影响较大,阻碍气体沿流动方向传热,在加热一段时间后,床内气体温度分布逐渐稳定,温度梯度呈对角线分布,符合空气-沙子交叉换热的典型特点。颗粒在床内不同位置的温度变化差别较大,初始阶段仅左侧颗粒被加热,在温度场稳定后,颗粒温度沿气流入射方向的梯度较大。空沙移动床内主要换热方式为对流换热,在500 ℃的加热温度下,对流传热热流量占比约98.50%;辐射传热热流量、导热传热热流量与空气入射速度正相关;空沙流量比与气相效能负相关,与固相效能正相关;空沙流量比与火用效率正相关。
Abstract
This study systematically examines the dense gas-solid two-phase flow behavior and conjugate heat transfer characteristics in an air-sand moving bed heat exchanger for tower-type solar thermal power generation systems. A mesoscopic-scale coupled lattice Boltzmann method-discrete element method (LBM-DEM) framework is developed to characterize particle-fluid hydrodynamic interactions and associated thermal transport phenomena under high solid-phase volume fraction conditions. Numerical simulations of heat transfer in the air-sand moving bed were conducted with different mass flow ratios of the air and sand. The paper studies the changes in the temperature fields of both the gas and solid phases and compares the proportions and the trends of different heat transfer modes throughout the process. The results indicate that the dense sand which hinders heat transfer along the airflow direction significantly affects the gas phase temperature field. After a period of heating, the gas temperature distribution in the bed stabilizes with a diagonal temperature gradient. It conforms to the characteristics of staggered-flow heat transfer in air-sand moving beds. The simulation reveals a significant variation in temperature changes of sands at different positions in the bed. At the initial stage, only the sand on the left side of the bed is heated. After the temperature field stabilized, the temperature gradient of sand along the direction of airflow incidence is substantial. The main mode of heat transfer in the air-sand moving bed is convective tranfer rate. At a heating air temperature of 500 ℃, the convective tranfer rate accounts for 98.50% of the total heat transfer. The radiation tranfer rate and conduction tranfer rate are positively correlated with the incident air velocity. The air-sand flow ratio is negatively correlated with the gas phase efficiency, but positively correlated with the solid phase efficiency. In addition, the air-sand flow ratio is positively correlated with the exergy efficiency.
关键词
太阳能热发电 /
两相流 /
传热特性 /
数值模拟 /
移动床换热器 /
LBM-DEM方法
Key words
solar thermal power generation /
two phase flow /
heat transfer performance /
numerical simulation /
moving bed heat exchanger /
LBM-DEM method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 岳霞, 阿迪力·巴吐尔. 太阳能热化学转化技术研究进展[J]. 太阳能学报, 2024, 45(1): 56-66.
YUE X, ADILI B.Progress in solar thermochemical conversion technologies[J]. Acta energiae solaris sinica, 2024, 45(1): 56-66.
[2] 王金龙, 鹿院卫, 吴玉庭, 等. 太阳能热发电用熔盐储热材料金属相容性研究[J]. 太阳能学报, 2024, 45(4): 540-545.
WANG J L, LU Y W, WU Y T, et al.Research on metal compatibility of molten salt thermal storage materials for solar thermal power generation[J]. Acta energiae solaris sinica, 2024, 45(4): 540-545.
[3] 张俊峰, 彭怀午, 田家铭, 等. 塔式太阳能吸热器表面热流密度预测及优化[J]. 太阳能学报, 2023, 44(12): 136-142.
ZHANG J F, PENG H W, TIAN J M, et al.Prediction and optimization of heat flux of surface receiver in tower concentrating solar power systen[J]. Acta energiae solaris sinica, 2023, 44(12): 136-142.
[4] RADWAN O A, HUMPHREY J D, HAKEEM A S, et al.Evaluating properties of Arabian desert sands for use in solar thermal technologies[J]. Solar energy materials and solar cells, 2021, 231: 111335.
[5] RADWAN O A, HUMPHREY J D.Uses of sands in solar thermal technologies[J]. Solar energy materials and solar cells, 2023, 261: 112533.
[6] ALAQEL S, DJAJADIWINATA E, SAEED R S, et al.Performance of the world’s first integrated gas turbine-solar particle heating and energy storage system[J]. Applied thermal engineering, 2022, 215: 119049.
[7] 杨建蒙, 孙源敏, 侯党员, 等. 空气-沙子移动床换热器传热特性实验研究[J]. 太阳能学报, 2022, 43(2): 276-281.
YANG J M, SUN Y M, HOU D Y, et al.Experimental study on heat transfer characteristics of air-sand moving bed heat exchanger[J]. Acta energiae solaris sinica, 2022, 43(2): 276-281.
[8] ZHANG S, ZHAO L, FENG J S, et al.Numerical investigation of the air-particles heat transfer characteristics of moving bed-effect of particle size distribution[J]. International journal of heat and mass transfer, 2022, 182: 122036.
[9] NGUYEN N S, BIGNONNET F.Numerical estimation of the permeability of granular soils using the DEM and LBM or FFT-based fluid computation method[J]. Granular matter, 2023, 25(3): 53.
[10] 马玖辰, 吕林海, 杨杰, 等. 基于LBM-MFLS耦合模型的含水层渗流-传热过程模拟[J]. 太阳能学报, 2023, 44(5): 30-39.
MA J C, LYU L H, YANG J, et al.Numerical simulation of fluid seepage and heat transfer in aquifer with LBM-MFLS coupled model[J]. Acta energiae solaris sinica, 2023, 44(5): 30-39.
[11] FU S T, WANG L M.GPU-based unresolved LBM-DEM for fast simulation of gas-solid flows[J]. Chemical engineering journal, 2023, 465: 142898.
[12] WARERKAR S, SCHMITZ S, GOETTSCHE J, et al.Air-sand heat exchanger for high-temperature storage[J]. Journal of solar energy engineering, 2011, 133(2): 021010.
[13] QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics letters (EPL), 1992, 17(6): 479-484.
[14] 陈恺成, 田于杰, 李飞, 等. 基于EMMS的循环流化床流域研究[J]. 化工学报, 2020, 71(7): 3018-3030, 3394.
CHEN K C, TIAN Y J, LI F, et al.EMMS-based flow regime study of circulating fluidized beds[J]. CIESC journal, 2020, 71(7): 3018-3030, 3394.
[15] 张庆来, 李斌, 王雨萌, 等. 基于LBM-DEM喷动床内换热特性介尺度数值模拟[J]. 煤炭学报, 2022, 47(S1): 331-339.
ZHANG Q L, LI B, WANG Y M, et al.Mesoscale numerical simulation of heat transfer characteristics in spouted bed based on LBM-DEM[J]. Journal of China Coal Society, 2022, 47(S1): 331-339.
[16] AHMADIAN M H, ZHENG W B.Simulating the fluid-solid interaction of irregularly shaped particles using the LBM-DEM coupling method[J]. Computers and geotechnics, 2024, 171: 106395.
[17] WANG Y T, JI L, LI B, et al.Investigation on the thermal energy storage characteristics in a spouted bed based on different nozzle numbers[J]. Energy reports, 2020, 6: 127-136.
[18] GLICKSMAN L R, HYRE M, WOLOSHUN K.Simplified scaling relationships for fluidized beds[J]. Powder technology, 1993, 77(2): 177-199.
[19] JONES L, GLICKSMAN L R.An experimental investigation of gas flow in a scale model of a fluidized-bed combustor[J]. Powder technology, 1986, 45(3): 201-213.
[20] 谢劲超, 张楠, 范天博, 等. 循环流化床相似准则及数值验证[J]. 过程工程学报, 2024, 24(3): 326-337.
XIE J C, ZHANG N, FAN T B, et al.Numerical investigation on scale-up rule of circulating fluidized bed[J]. The Chinese journal of process engineering, 2024, 24(3): 326-337.
[21] 孙源敏, 杨建蒙, 李斌. 空气-沙子移动床换热器运行参数优化[J]. 电力科学与工程, 2020, 36(11): 64-69.
SUN Y M, YANG J M, LI B.Operation parameter optimization of air-sand moving bed heat exchanger[J]. Electric power science and engineering, 2020, 36(11): 64-69.