为提高质子交换膜氢燃料电池在实际工况中的应用效率,根据实际电堆性能与质子交换膜氢燃料电池(PEMFC)的工作原理对现有的能斯特电动势模型进行改进,结合机理建模和辨识建模方法,建立效率更高、稳定性更好的新型PEMFC系统模型,基于Matlab等平台对该模型进行仿真验证分析。结果表明,新型PEMFC系统模型能够直观反映电堆输出电压、输出功率、电池效率受温度、氢氧比、压差等参数影响的变化趋势,相较于传统PEMFC系统模型,在电池效率、续航、稳定性等方面有较大提升。
Abstract
In order to improve the efficiency of the proton exchange membrane fuel cell system, the existing Nernst electromotive force model was improved according to the actual stack performance and the working principle of PEMFC. By combining mechanism modeling and identification modeling methods, a new PEMFC system model with higher efficiency and better stability was established. The model was simulated, verified and analyzed based on Matlab platform. The results show that the new PEMFC system model can visually reflect the changing trends of the stack output voltage, output power, and battery efficiency affected by parameters such as temperature, hydrogen-oxygen ratio, and pressure difference. Compared with the traditional PEMFC system model, it has significant improvements in battery efficiency, endurance, and stability.
关键词
氢燃料电池 /
PEMFC系统模型 /
能斯特电动势 /
极化反应
Key words
hydrogen fuel cell /
PEMFC system model /
Nernst electromotive force /
polarization reaction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 范晶, 周蕾. 氢氧燃料电池系统能量模型与仿真[J]. 船电技术, 2016, 36(7): 42-46.
FAN J, ZHOU L.Energy model and simulation of hydrogen-oxygen fuel cell system[J]. Marine electric & electronic engineering, 2016, 36(7): 42-46.
[2] 许有伟, 陈桂银, 吕平, 等. 燃料电池系统仿真分析及测试验证[J]. 汽车工程, 2023, 45(9): 1710-1719.
XU Y W, CHEN G Y, LYU P, et al.Simulation analysis and test validation of fuel cell system[J]. Automotive engineering, 2023, 45(9): 1710-1719.
[3] 熊兵, 朱瑶, 余宇翔, 等. 氢燃料电池汽车供氢系统研究现状[J]. 科技与创新, 2023(16): 39-41.
XIONG B, ZHU Y, YU Y X, et al.Research status of hydrogen supply system for hydrogen fuel cell vehicles[J]. Science and technology & innovation, 2023(16): 39-41.
[4] 王承祥, 崔立堃, 冯绪永, 等. 氢燃料电池汽车动力系统设计及性能仿真[J]. 汽车实用技术, 2023, 48(5): 8-15.
WANG C X, CUI L K, FENG X Y, et al.Design and performance simulation of hydrogen fuel cell vehicle power system[J]. Automobile applied technology, 2023, 48(5): 8-15.
[5] 李逸凡, 李奇楠, 杨苗苗, 等. 氢燃料电池汽车全球技术法规第二阶段火烧试验方法研究[J]. 太阳能学报, 2022, 43(6): 277-285.
LI Y F, LI Q N, YANG M M, et al.Research on fire test method of UN GTR 13 phase 2[J]. Acta energiae solaris sinica, 2022, 43(6): 277-285.
[6] 金致含, 苏建徽, 施永, 等. 基于二进制序列的燃料电池宽频带EIS测试[J]. 太阳能学报, 2022, 43(7): 1-8.
JIN Z H, SU J H, SHI Y, et al.Broadband eis test of fuel cell based on binary sequences[J]. Acta energiae solaris sinica, 2022, 43(7): 1-8.
[7] PARK G, GAJIC Z.Sliding mode control of a linearized polymer electrolyte membrane fuel cell model[J]. Journal of power sources, 2012, 212: 226-232.
[8] 张可健, 曲大为, 兰洪星, 等. 基于Matlab/Simulink的氢燃料电池系统建模与仿真[J]. 科学技术与工程, 2021, 21(13): 5380-5386.
ZHANG K J, QU D W, LAN H X, et al.Hydrogen fuel cell system modeling and simulation based on Matlab/Simulink[J]. Science technology and engineering, 2021, 21(13): 5380-5386.
[9] KWAK Y J, CHOI E, SONG M Y.Milling processes and hydrogen storage properties of Mg-graphene composites[J]. Materials science, 2019, 25(3): 286-291.
[10] CHENG Q Y, WANG M F, NI J J, et al.High-entropy alloys for accessing hydrogen economy via sustainable production of fuels and direct application in fuel cells[J]. Rare metals, 2023, 42(11): 3553-3569.
[11] 闫贯博. 氢燃料电池发电DC-AC-DC电能变换研究[D]. 北京: 北京化工大学, 2013.
YAN G B.Reseach on DC-AC-DC energy conversion of hydrogen fuel cell power generation[D]. Beijing: Beijing University of Chemical Technology, 2013.
[12] 刘椋文. 基于代理模型的优化方法研究及其应用[D]. 成都: 电子科技大学, 2020.
LIU L W.Research and application of optimization method based on surrogate model[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[13] 赵金国, 郭恒. 氢燃料电池氢气利用率提升策略研究[J]. 太阳能学报, 2022, 43(8): 510-516.
ZHAO J G, GUO H.Research on hydrogen utilization rate enhancement strategy of hydrogen fuel cell[J]. Acta energiae solaris sinica, 2022, 43(8): 510-516.
[14] 刘志恩, 罗玉兰, 周辉, 等. 燃料电池空气系统增湿器建模与仿真[J]. 太阳能学报, 2022, 43(8): 504-509.
LIU Z E, LUO Y L, ZHOU H, et al.Modeling and simulation of humidifier for fuel cell air system[J]. Acta energiae solaris sinica, 2022, 43(8): 504-509.
[15] KNAUTH P, SGRECCIA E, NALLAYAGARI A R, et al.Electrocatalytic composites of carbon quantum dots and anion exchange ionomers for the oxygen reduction reaction[J]. European journal of materials, 2023, 3(1):
[16] LI W, LIU W, JIA W D, et al.Dual-proton conductor for fuel cells with flexible operational temperature[J]. Advanced materials, 2024, 36(14): 2310584.
[17] KIM M, ZHANG G G, JANG S, et al.Fatigue-resistant polymer electrolyte membranes for fuel cells[J]. Advanced materials, 2024, 36(14): 2308288.
[18] WANG Z Q, LIU X L, MAO Y Y, et al.An efficient bias-free Si photocathode coupled BiVO4-triethanolamine photoelectrochemical fuel cell for simultaneous pollutant treatment and hydrogen production[J]. Advanced functional materials, 2024, 34(17): 2313950.
[19] HOSSEINI S, POOLAEI MOZIRAJI Z, PIRKANDI J.Thermodynamic modeling and exergy analysis of a gas turbine and fuel cell hybrid system (SOFC + GT) equipped with single-effect and double-effect absorption chillers[J]. Clean technologies and environmental policy, 2024, 26(4): 1301-1314.
[20] SUN D D, SUN Z P, YANG D H, et al.Advances in boron nitride-based materials for electrochemical energy storage and conversion[J]. EcoEnergy, 2023, 1(2): 375-404.
基金
教育部重点实验室开放基金项目(NEPUME-kfjj-026)