大型海上风电场双边环形集电系统优化方法

刘青, 毛世博, 马玉涛, 苗照晨, 李龙威

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 168-175.

PDF(1952 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1952 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 168-175. DOI: 10.19912/j.0254-0096.tynxb.2024-0698

大型海上风电场双边环形集电系统优化方法

  • 刘青, 毛世博, 马玉涛, 苗照晨, 李龙威
作者信息 +

TOPOLOGY OPTIMIZATION METHOD OF BILATERAL RING COLLECTOR SYSTEM FOR LARGE-SCALE OFFSHORE WIND FARMS

  • Liu Qing, Mao Shibo, Ma Yutao, Miao Zhaochen, Li Longwei
Author information +
文章历史 +

摘要

为解决大型海上风电场集电系统规划过程中的可靠性与经济性平衡问题,提出针对双边环形集电系统优化方法,针对海上风电场集电系统不能交叉的问题,利用环形扫描法构造初始可行解,并设计检测交叉算法来规避电缆的交叉。在路径寻优时,为了更好地找到全局最优解,通过灰狼算法与遗传算法相结合的方法来提高算法的全局探索性能。以某大型风电场为例,验证该算法的有效性并采用序贯蒙对优化后方案的可靠性进行评估。

Abstract

In order to solve the problem of reliability and economy balance in the planning process of large offshore wind farm collector system, an optimization method for bilateral ring collector system is proposed. Aiming at the problem that the collector system of offshore wind farm cannot be crossed, the initial feasible solution is constructed by ring scanning method, and the detection crossover algorithm is designed to avoid the crossover of cables. In order to find the global optimal solution better, the global exploration performance of the algorithm is improved by the combination of grey wolf algorithm and genetic algorithm. Taking a large wind farm as an example, the effectiveness of the algorithm is verified and the reliability of the optimized scheme is evaluated by sequential Monte Carlo method.

关键词

海上风电场 / 拓扑优化 / 可靠性评估 / 集电系统 / 遗传灰狼算法

Key words

offshore wind farms / topology optimization / reliability analysis / collector system / genetic gray wolf algorithm

引用本文

导出引用
刘青, 毛世博, 马玉涛, 苗照晨, 李龙威. 大型海上风电场双边环形集电系统优化方法[J]. 太阳能学报. 2025, 46(8): 168-175 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0698
Liu Qing, Mao Shibo, Ma Yutao, Miao Zhaochen, Li Longwei. TOPOLOGY OPTIMIZATION METHOD OF BILATERAL RING COLLECTOR SYSTEM FOR LARGE-SCALE OFFSHORE WIND FARMS[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 168-175 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0698
中图分类号: TM757.4   

参考文献

[1] 张承婉, 张锦华, 龙凯, 等. 海上风电机组多导管架拓扑优化方法[J]. 太阳能学报, 2023, 44(6): 495-500.
ZHANG C W, ZHANG J H, LONG K, et al.Topology optimization methodology on multi-jacket structure for offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(6): 495-500.
[2] 崔东岭, 江春, 史忠秋, 等. 大型海上风电项目中的集电海缆研究[J]. 南方能源建设, 2020, 7(2): 98-102.
CUI D L, JIANG C, SHI Z Q, et al.Research on array submarine cables in large offshore windfarm[J]. Southern energy construction, 2020, 7(2): 98-102.
[3] 张子良, 郭乃志, 易侃, 等. 几何约束条件下海上风电场布局优化方法研究[J]. 太阳能学报, 2023, 44(2): 116-122.
ZHANG Z L, GUO N Z, YI K, et al.Investigation of offshore-wind-farm layout optimization under geometrical constraints[J]. Acta energiae solaris sinica, 2023, 44(2): 116-122.
[4] 符杨, 吴靖, 魏书荣. 大型海上风电场集电系统拓扑结构优化与规划[J]. 电网技术, 2013, 37(9): 2553-2558.
FU Y, WU J, WEI S R.Topology optimization and planning of power collection system for large-scale offshore wind farm[J]. Power system technology, 2013, 37(9): 2553-2558.
[5] 罗魁, 郭剑波, 马士聪, 等. 海上风电并网可靠性分析及提升关键技术综述[J]. 电网技术, 2022, 46(10): 3691-3703.
LUO K, GUO J B, MA S C, et al.Review of key technologies of reliability analysis and improvement for offshore wind power grid integration[J]. Power system technology, 2022, 46(10): 3691-3703.
[6] ZUO T J, ZHANG Y C, MENG K, et al.A two-layer hybrid optimization approach for large-scale offshore wind farm collector system planning[J]. IEEE transactions on industrial informatics, 2021, 17(11): 7433-7444.
[7] 孙瑞娟, ABEYNAYAKE GAYAN, 穆清, 等. 基于通用生成函数的海上风电集电系统可靠性与经济性评估[J]. 电力系统自动化, 2022, 46(5): 159-173.
SUN R J, ABEYNAYAKE G, MU Q, et al.Reliability and economic evaluation of offshore wind power collection system based on universal generating function[J]. Automation of electric power systems, 2022, 46(5): 159-173.
[8] 戚远航, 侯鹏, 金荣森. 基于Q学习粒子群算法的海上风电场电气系统拓扑优化[J]. 电力系统自动化, 2021, 45(21): 66-75.
QI Y H, HOU P, JIN R S.Optimization of electrical system topology for offshore wind farm based on Q-learning particle swarm optimization algorithm[J]. Automation of electric power systems, 2021, 45(21): 66-75.
[9] JIN R S, HOU P, YANG G Y, et al.Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model[J]. Applied energy, 2019, 254: 113719.
[10] 魏书荣, 刘昆仑, 符杨, 等. 基于拓扑冗余度评估的大型海上风电场集电系统优化[J]. 电力系统自动化, 2018, 42(18): 84-90.
WEI S R, LIU K L, FU Y, et al.Optimization of power collector system for large-scale offshore wind farm based on topological redundancy assessment[J]. Automation of electric power systems, 2018, 42(18): 84-90.
[11] 宋冬然, 晏嘉琪, 夏鄂, 等. 基于改进麻雀搜索算法的大型海上风电场电缆布置优化[J]. 电力系统保护与控制, 2022, 50(12): 134-143.
SONG D R, YAN J Q, XIA E, et al.Optimization of cable layout for large-scale offshore wind farms based on an improved sparrow search algorithm[J]. Power system protection and control, 2022, 50(12): 134-143.
[12] 王辉, 付凌云, 孙世民. 海上风电场海缆布局优化设计方法[J]. 高压电器, 2022, 58(1): 46-52.
WANG H, FU L Y, SUN S M.Optimization design method for submarine cable layout of offshore wind farm[J]. High voltage apparatus, 2022, 58(1): 46-52.
[13] 吴伊雯. 基于混合生态共生算法的海上风电场集电线路优化方法研究[D]. 北京: 华北电力大学, 2020.
WU Y W.Research on optimization method of collecting lines of offshore wind farms based on hybrid ecological symbiosis algorithm[D]. Beijing: North China Electric Power University, 2020.
[14] 樊潇, 卢永魁, 黄玲玲, 等. 大型海上风电场集电系统网络拓扑优化设计[J]. 电力系统及其自动化学报, 2016, 28(7): 51-56.
FAN X, LU Y K, HUANG L L, et al.Network topology optimization of electrical collection system of large-scale offshore wind farm[J]. Proceedings of the CSU-EPSA, 2016, 28(7): 51-56.
[15] 魏书荣, 符杨, 黄玲玲. 大型海上风电场中压集电系统拓扑结构的优化方法[J]. 上海电力学院学报, 2015, 31(3): 201-205, 213.
WEI S R, FU Y, HUANG L L.Topological optimization method of the electric power collection system for an offshore wind farm[J]. Journal of Shanghai University of Electric Power, 2015, 31(3): 201-205, 213.
[16] 陈宁. 大型海上风电场集电系统优化研究[D]. 上海: 上海电力学院, 2011.
CHEN N.Study on optimization of current collection system of large offshore wind farm[D]. Shanghai: Shanghai University of Electric Power, 2011.
[17] SHEN X W, WU Q W, ZHANG H C, et al.Optimal planning for electrical collector system of offshore wind farm with double-sided ring topology[J]. IEEE transactions on sustainable energy, 2023, 14(3): 1624-1633.
[18] TAO S Y, XU Q S, FEIJÓO A, et al. Joint optimization of wind turbine micrositing and cabling in an offshore wind farm[J]. IEEE transactions on smart grid, 2021, 12(1): 834-844.
[19] 梁宇涛, 林舜江, 冯祥勇, 等. 海上风电场交流集电和多端柔直输电并网系统多目标优化规划[J]. 电网技术, 2024, 48(6): 2404-2415.
LIANG Y T, LIN S J, FENG X Y, et al.Multi-objective optimal planning for AC electrical collector and VSC-MTDC transmission grid-connected system of offshore wind farms[J]. Power system technology, 2024, 48(6): 2404-2415.
[20] 符杨, 刘阳, 黄玲玲, 等. 海上风电场集群接入系统组网优化[J]. 中国电机工程学报, 2018, 38(12): 3441-3450.
FU Y, LIU Y, HUANG L L, et al.Optimization of grid integration network for offshore wind farm cluster[J]. Proceedings of the CSEE, 2018, 38(12): 3441-3450.
[21] 李芃达, 李东东. 海上风电场集电系统拓扑结构优化研究[J]. 电力系统保护与控制, 2016, 44(18): 102-107.
LI P D, LI D D.Study on topology optimization of electrical collector system for offshore wind farm[J]. Power system protection and control, 2016, 44(18): 102-107.

基金

国家重点研发计划(2023YFC3009800)

PDF(1952 KB)

Accesses

Citation

Detail

段落导航
相关文章

/