基于改进煤制氢的工业园区综合能源系统优化调度与评价

朱兆彬, 应光耀, 马秀娟, 袁世琦, 蔡东阁, 刘才华

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 697-708.

PDF(2095 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2095 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 697-708. DOI: 10.19912/j.0254-0096.tynxb.2024-0699

基于改进煤制氢的工业园区综合能源系统优化调度与评价

  • 朱兆彬1, 应光耀1, 马秀娟1, 袁世琦2, 蔡东阁3, 刘才华4
作者信息 +

OPTIMIZATION SCHEDULING AND EVALUATION OF INTEGRATED ENERGY SYSTEM IN INDUSTRIAL PARK BASED ON IMPROVED COAL-TO-HYDROGEN PRODUCTION

  • Zhu Zhaobin1, Ying Guangyao1, Ma Xiujuan1, Yuan Shiqi2, Cai Dongge3, Liu Caihua4
Author information +
文章历史 +

摘要

为减少煤制氢成本、高效利用工业园区资源以及客观评估园区综合水平,提出一种改进煤制氢的工业园区综合能源系统优化调度与评价模型。首先,构建考虑园区工业副产物高温熔渣参与煤制氢过程的热力学模型,通过变压吸附、氧化钙反应成渣的方式确定H2、CO2产量;其次,将煤制氢过程与氢、热系统耦合,结合碳捕集、封存与利用和电转气装置消纳CO2;然后,引入阶梯碳交易机制,从碳交易基价、区间长度和价格增长率3个角度分析碳排放和总成本的关系;最后,以总运行成本最低为目标进行求解,通过熵权-TOPSIS-灰色关联模型从经济、环保、设备损耗角度进行综合评价。结果表明,所提模型在碳排放量和运行成本方面分别减少7.4,%和31.3%,证明了运行成本并不能作为评定系统优劣的唯一标准。

Abstract

In order to reduce the cost of coal-to-hydrogen production, efficiently utilize the resources of the industrial park, and objectively assess the comprehensive level of the park, an optimized scheduling and evaluation model of the integrated energy system of the industrial park with improved coal-to-hydrogen production is proposed. Firstly, a thermodynamic model is constructed to consider the participation of high-temperature slag, an industrial by-product of the park, in the coal-to-hydrogen process, and the hydrogen and carbon dioxide yields are determined by variable pressure adsorption and calcium oxide reaction to slag. secondly, the coal-to-hydrogen process is coupled with the hydrogen and thermal systems, and carbon dioxide is consumed by the combination of carbon capture, sequestration, and utilization, and electricity-to-gas conversion devices. Then, the tiered carbon trading mechanism is introduced to analyze the relationship between carbon emission and total cost from three perspectives of carbon trading base price, interval length and price growth rate. Finally the solution is based on the objective of minimizing the total operating cost, and the entropy weight-TOPSIS-gray correlation model is used to make a comprehensive evaluation in terms of economy, environmental protection, and equipment wear and tear. The results show that the proposed model reduces carbon emissions and operating costs by 7.4% and 31.3%, respectively, which also proves that operating costs cannot be the sole criterion for evaluating the advantages and disadvantages of the system.

关键词

综合能源系统 / 阶梯碳交易机制 / 煤制氢 / 高温熔渣 / 综合评价

Key words

integrated energy system / tiered carbon trading mechanism / coal-to-hydrogen / high-temperature slag / comprehensive evaluation

引用本文

导出引用
朱兆彬, 应光耀, 马秀娟, 袁世琦, 蔡东阁, 刘才华. 基于改进煤制氢的工业园区综合能源系统优化调度与评价[J]. 太阳能学报. 2025, 46(8): 697-708 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0699
Zhu Zhaobin, Ying Guangyao, Ma Xiujuan, Yuan Shiqi, Cai Dongge, Liu Caihua. OPTIMIZATION SCHEDULING AND EVALUATION OF INTEGRATED ENERGY SYSTEM IN INDUSTRIAL PARK BASED ON IMPROVED COAL-TO-HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 697-708 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0699
中图分类号: TM732   

参考文献

[1] 张诚, 檀志恒, 晁怀颇. “双碳” 背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under “carbon peaking and neutralization” background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[2] 潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47(10): 1-13.
PAN G S, GU Z F, LUO E B, et al.Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J]. Automation of electric power systems, 2023, 47(10): 1-13.
[3] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350.
CHEN M P, REN J X, LI F Q.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta energiae solaris sinica, 2023, 44(3): 344-350.
[4] 张青苗, 陈来军, 李笑竹, 等. 基于主从博弈的工业园区运营商与分布式光储用户购售电优化决策[J]. 太阳能学报, 2024, 45(1): 450-456.
ZHANG Q M, CHEN L J, LI X Z, et al.Optimization decision of purchasing and selling power between industrial park operators and distributed optical storage users based on Stackelberg game[J]. Acta energiae solaris sinica, 2024, 45(1): 450-456.
[5] 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳” 目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156-179.
MENG X Y, CHEN M Y, GU A L, et al.China’s hydrogen development strategy in the context of double carbon targets[J]. Natural gas industry, 2022, 42(4): 156-179.
[6] 周天, 赵叶静, 刘志强, 等. 生物质制氢与煤制氢过程的技术经济分析与生命周期评价[J]. 中南大学学报(自然科学版), 2022, 53(7): 2733-2745.
ZHOU T, ZHAO Y J, LIU Z Q, et al.Techno-economic analysis and life cycle analysis of biomass-tohydrogen and coal-to-hydrogen[J]. Journal of Central South University (science and technology), 2022, 53(7): 2733-2745.
[7] 杨周义, 邢海军, 江伟建, 等. 基于低碳需求响应的含煤制氢与碳捕集电厂的综合能源系统优化调度[J]. 电力自动化设备, 2024, 44(4): 25-32.
YANG Z Y, XING H J, JIANG W J, et al.Optimal scheduling of integrated energy system with coal-to-hydrogen and carbon capture power plant based on low-carbon demand response[J]. Electric power automation equipment, 2024, 44(4): 25-32.
[8] YIN J J, WANG J H, YOU J, et al.Integrated energy system optimal operation in coal district with hydrogen heavy trucks[J]. Frontiers in energy research, 2021, 9: 748673.
[9] 王智化, 王勤辉, 骆仲泱, 等. 新型煤气化燃烧集成制氢系统的热力学研究[J]. 中国电机工程学报, 2005, 25(12): 91-97.
WANG Z H, WANG Q H, LUO Z Y, et al.Thermodynamic analysis of hydrogen production by new coal utilization technology with combined gasification and combustion[J]. Proceedings of the CSEE, 2005, 25(12): 91-97.
[10] 阳国军, 刘会友. 现代煤化工与绿电和绿氢耦合发展现状及展望[J]. 石油学报(石油加工), 2022, 38(4): 995-1000.
YANG G J, LIU H Y.Status and prospect for the coupling development of modern coal chemical industry with green electricity and green hydrogen[J]. Acta petrolei sinica (petroleum processing section), 2022, 38(4): 995-1000.
[11] 王照成, 郑李斌, 李繁荣. 煤制氢装置二氧化碳捕集流程模拟与对比[J]. 低碳化学与化工, 2023, 48(3): 148-153, 164.
WANG Z C, ZHENG L B, LI F R.Simulation and comparison of carbon dioxide capture processes in coal-to-hydrogen units[J]. Low-carbon chemistry and chemical engineering, 2023, 48(3): 148-153, 164.
[12] 刘可汉, 张桥. 炉渣余热利用与粗甘油制氢的流场与过程多尺度模拟[J/OL]. 控制工程, 2023: 1-6. (2023-12-28). https://link.cnki.net/doi/10.14107/j.cnki.kzgc.20230946.
LIU K H, ZHANG Q. Multi-scale simulation of flow field and process of slag waste heat utilization and crude glycerol hydrogen production[J/OL]. Control engineering of China, 2023: 1-6. (2023-12-28). https://link.cnki.net/doi/10.14107/j.cnki.kzgc.20230946.
[13] 童力, 胡松涛, 罗思义. 高炉渣余热回收协同转化生物质制氢[J]. 化工学报, 2014, 65(9): 3634-3639.
TONG L, HU S T, LUO S Y.Waste heat recovery of blast furnace slag and utilization for production of hydrogen from biomass transformation[J]. CIESC journal, 2014, 65(9): 3634-3639.
[14] 吴龙, 吴华峰, 吴跃东, 等. 高温熔渣热资源回收技术发展及探讨[J]. 环境工程, 2020, 38(9): 190-193, 88.
WU L, WU H F, WU Y D, et al.Discussion on development of heat recovery technology for high temperature molten slag[J]. Environmental engineering, 2020, 38(9): 190-193, 88.
[15] 张凡. 熔融盐改性氧化钙催化生物质活性炭-CO2气化研究[D]. 上海: 东华大学, 2023.
ZHANG F.Study on catalyzed biomass activated carbon-CO2 gasification by molten salt modified calcium oxide[D]. Shanghai: Donghua University, 2023.
[16] 李志伟, 赵雨泽, 吴培. 碳交易机制下绿氢蓝氢协调优化对综合能源系统的影响评估[J]. 太阳能学报, 2024, 45(10): 37-47.
LI Z W, ZHAO Y Z, WU P.Impact assessment of coordinated optimization of green hydrogen and blue hydrogen on integrated energy system under carbon trading mechanism[J]. Acta energiae solaris sinica, 2024, 45(10): 37-47.
[17] ZHU G, GAO Y.Multi-objective optimal scheduling of an integrated energy system under the multi-time scale ladder-type carbon trading mechanism[J]. Journal of cleaner production, 2023, 417: 137922.
[18] CUI Y, XU Y, HUANG T, et al.Low-carbon economic dispatch of integrated energy systems that incorporate CCPP-P2G and PDR considering dynamic carbon trading price[J]. Journal of cleaner production, 2023, 423: 138812.
[19] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN J P, HU Z J, CHEN Y G, et al.Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric power automation equipment, 2021, 41(9): 48-55.
[20] 赵鹏翔, 李振, 王楠, 等. 基于源荷双侧主从博弈的园区综合能源系统运行优化策略[J]. 电力系统及其自动化学报, 2021, 33(9): 109-116, 122.
ZHAO P X, LI Z, WANG N, et al.Operation optimization strategy for district integrated energy system based on Stackelberg game between supply and demand sides[J]. Proceedings of the CSU-EPSA, 2021, 33(9): 109-116, 122.
[21] 李滨, 谢旭槟, 梁振成, 等. “双高” 电力系统集中式储能选址定容规划策略[J]. 电力系统及其自动化学报, 2024, 36(9): 31-43.
LI B, XIE X B, LIANG Z C, et al.Centralized energy storage site selection and capacity planning strategy for power system with high shares of renewables and power electronics[J]. Proceedings of the CSU-EPSA, 2024, 36(9): 31-43.
[22] 莫一夫, 张勇军. 基于变权灰关联的智能配电网用电可靠性提升对象优选[J]. 电力系统保护与控制, 2019, 47(5): 26-34.
MO Y F, ZHANG Y J.Optimal object selection of power utilization reliability promotion for smart distribution grid based on weighted grey correlation[J]. Power system protection and control, 2019, 47(5): 26-34.
[23] SONG L, LIU X J, SKIBA U, et al.Ambient concentrations and deposition rates of selected reactive nitrogen species and their contribution to PM2.5 aerosols at three locations with contrasting land use in southwest China[J]. Environmental pollution, 2018, 233: 1164-1176.
[24] LI C B, YANG H Y, SHAHIDEHPOUR M, et al.Optimal planning of islanded integrated energy system with solar-biogas energy supply[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2437-2448.
[25] 王守文, 李国祥, 闫文文, 等. 计及改进生物质燃气和阶梯碳交易的综合能源系统低碳经济调度[J]. 电力系统及其自动化学报, 2024, 36(2): 126-134, 143.
WANG S W, LI G X, YAN W W, et al.Low-carbon economic dispatching of integrated energy system including improved biomass natural gas and ladder-type carbon trading[J]. Proceedings of the CSU-EPSA, 2024, 36(2): 126-134, 143.
[26] 初壮, 赵蕾, 孙健浩, 等. 考虑热能动态平衡的含氢储能的综合能源系统热电优化[J]. 电力系统保护与控制, 2023, 51(3): 1-12.
CHU Z, ZHAO L, SUN J H, et al.Thermoelectric optimization of an integrated energy system with hydrogen energy storage considering thermal energy dynamic balance[J]. Power system protection and control, 2023, 51(3): 1-12.
[27] 徐箭, 胡佳, 廖思阳, 等. 考虑网络动态特性与综合需求响应的综合能源系统协同优化[J]. 电力系统自动化, 2021, 45(12): 40-48.
XU J, HU J, LIAO S Y, et al.Coordinated optimization of integrated energy system considering dynamic characteristics of network and integrated demand response[J]. Automation of electric power systems, 2021, 45(12): 40-48.
[28] 王守文, 叶金根, 徐丽洁, 等. 计及温控厌氧发酵和阶梯碳交易的农村综合能源低碳经济调度[J]. 电力系统保护与控制, 2024, 52(8): 88-97.
WANG S W, YE J G, XU L J, et al.Rural comprehensive energy low-carbon economic dispatch taking into account temperaturecontrolled anaerobic fermentation and ladder carbon trading[J]. Power system protection and control, 2024, 52(8): 88-97.

基金

国网浙江省电力有限公司科技项目(B311NN240001); 国家电网有限公司总部科技项目(1400-202390641A-3-2-ZN)

PDF(2095 KB)

Accesses

Citation

Detail

段落导航
相关文章

/